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Abstract: 
Flow plasticity theory has been widely used for nonlinear simulation of reinforced concrete (RC) 

structures. Constitutive relations of flow plasticity theory in CAE software are referred to as material 
models. One of the most popular concrete models is the Menetrey-Willam model realized in ANSYS 
software. The Menetrey-Willam constitutive model can well capture many important mechanical 
behaviors of concrete such as different tensile and compression strength, nonlinear hardening, softening, 
and dilatancy. However, there is no published calibration methodology with a clear foundation based on 
structural design standards. This study suggests an effective calibration procedure to identify the input 
parameters for the Menetrey-Willam model, mainly according to the CEB-FIP Model Code. Firstly, the 
identified parameters were verified on basic material tests by a single element simulation. Verification 
revealed full compliance simulation results with the standards for uniaxial compression, uniaxial tension, 
and biaxial compression stress states. To validate the ability of the material model to objectively 
reproduce structural behavior we validated it on six structural tests: confined uniaxial compression of a 
cube specimen, four-point bending test of a RC beam, three-point bending test of a notched concrete 
beam, eccentric compression of a RC column, shear rupture test and push-off test of an S-shaped 
specimen. For all structural tests, a mesh sensitivity analysis was also carried out. The use of the 
proposed model parameters allows to achieve a good match with the experimental data for all the 
considered problems almost independently of the mesh size. The obtained parameters can be 
conveniently used for occasional users without special knowledge in the field of concrete mechanics. 

1 Introduction 

Concrete is a complex, heterogeneous material that is characterized by nonlinear behavior, various 
resistance to tension and compression, dilatation under shear distortion, erosion due to both cracking 
and crushing. 

Concrete structures are often analyzed using the finite element method. Currently there are many 
constitutive models for numerical modeling of concrete behavior. Material models of concrete are usually 
based on the following theories: theory of plasticity with plastic flow rule [1–4], microplane theory [5–12], 
endochronic theory [13–16], nonlinear fracture mechanics and damage theory [17–21], theory of visco-
plasticity [22]. Each of these theories covers a certain range of concrete behavior, so the choice of an 
appropriate theory and constitutive model depends on the application specifics. 

Most constitutive models for concrete in commercial CAE packages are based on flow plasticity 
theory. One of the most popular models is the one based on Menetrey–Willam yield surface. This way, 
there are many papers devoted to the creation of improved constitutive models based on the Menetrey-
Willam yield surface [23–32]. However, these models have not been sufficiently validated and are not 
widely used in CAE software. In the paper [33], the authors proposed the reverse identification of 
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Menetrey–Willam model parameters, which is implemented in ANSYS software, based on the 
coincidence of the results of the simulation and the experiment. Obviously, this optimization approach 
can provide parameters that have no physical foundation and therefore are called into question. 

Present study proposes the calibration and validation methodology of the Menetrey-Willam 
constitutive model for concrete implemented in ANSYS software. In the calibration procedure, all 
parameters are set according to European standards. Menetrey-Willam constitutive model [1, 3] based 
on the theory of plasticity with non-associated flow rule. The main components of the model are a loading 
surface, a function of plastic potential and a formulation of hardening/softening behavior. 

2 Methods 

2.1 Menetrey-Willam constitutive model 

2.1.1 Fundamental constitutive equations and the principal stress space definition 

Following the theory of plasticity, the increments of total strain d  can be represented as a sum of 

elastic 
eld  and plastic 

pld  components: 

 .el pld d d  = +   

The increment of elastic strain is determined by means of the stress increment through the matrix 

of elasticity  D ,which is determined by elastic modulus E  and Poisson’s ratio   (generalized Hooke's 

law): 

  
1

.eld D d 
−

=   

The increment of plastic strain is determined in accordance with the non-associated flow law: 

   ,pl Q
d d 




=


  

where   is the stress vector,   is the non-negative plastic multiplier, Q  is the plastic potential function. 

The non-associated flow law implies that the direction of the plastic strain vector is oriented along 

the normal to the surface of the plastic potential Q , which differs from the loading surface function F . 

Both loading surface and plastic potential functions are defined as functions of the three stress 

tensor invariants 1 2 3, ,I J J : 
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For attractive geometric interpretation, the functions are described in Haigh-Westergaard 

coordinates ,  ,   , where   is the hydrostatic stress invariant,   is the deviatoric stress invariant,   

is the deviatoric polar angle. The coordinates depend on principal stress tensor components: 
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2.1.2 Loading surface 

The loading surface in Haigh–Westergaard stress space ( ),  ,F     is the set of points for which 

the condition for the beginning of plastic flow is true. Thus, the loading surface separates the zones of 
elastic and elastic-plastic deformation. Due to hardening and softening, the shape and size of the loading 
surface are constantly changing. 
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The Menetrey-Willam constitutive model assumes isotropic hardening in which the loading surface 
only changes its size while maintaining the coaxiality of the hydrostatic axis. 

The loading surface based on Willam-Warnke yield surface [3] and for current stress state is 
defined by the following function: 

 ( ) 22

3 3

1
,  , 2 ,

c
F r

c c
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In the expressions (2.1)–(2.3) 𝑓
𝑐
, 𝑓

𝑡
, 𝑓

𝑏𝑐
 are the current uniaxial compressive strength, uniaxial tension 

strength and biaxial compressive strength, respectively. These values depend on the default values of 
the strength and compression and tension hardening/softening functions: 

 ,Ωt t tcf f=   

 Ω ,c c cf f=   

 ,Ωbc bc cf f=   

where 
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Ωc  and Ωt  are the hardening/softening functions in compression and tension, respectively, c  is the 

current compression–hardening parameter, cm  is the compression–hardening parameter which 

corresponds with uniaxial compressive strength. The explanation of these variables is presented below. 

2.1.3 Hardening and softening functions 
The processes of cracking and crushing are described with a strain–softening model which refers 

to gradual decrease in strength with additional deformation. This strength reduction may be thought as 
cohesion decrease or destruction of the microstructure. However, the model is not able to describe the 
effect of the elastic modulus reduction. It should be considered in the problems where stiffness 
degradation is important. 

The hardening/softening behavior of concrete is modeled by varying the size of the loading surface 
and the plastic potential surface. The size of these surfaces in the space of principal stresses depends 

on the current strength values, which are determined by the hardening/softening functions Ωt  and  Ωc  

as shown above. These functions depend on the compression- and tension-hardening parameters and 
evolve according to the work hardening expressions [23]: 
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where t  is the current tension-hardening parameter, c  and t  are the compression and tension weight 

functions given by the following expressions: 

 1 ,c t = −   
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( )
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Note that in the case of simple stress state, the hardening parameter coincides with the value of 

plastic strain, i.e. 
pl  . 

Menetrey-Willam concrete model realized in ANSYS software can consider linear or exponential 
softening. Both these approaches meet the requirements of CEB-FIP Model Code [34, 35]. 

Before any plastic deformation occurs, the hardening function Ωc  holds a constant value of Ωci , 

defining the initial loading surface that bounds the initial elastic regime. 

In the case of linear softening, the hardening/softening function in compression Ωc  is set of power 

hardening function and linear softening function (Fig. 2.1). 

  
a b 

Figure 2.1 – Hardening/softening functions with linear softening: a – in compression; b – in tension 

The power hardening function (for cm  ) is: 

 ( )
2

2
Ω Ω 1 Ω 2 .c c
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At c cm =  compressive strength is reached and softening starts. The linear softening function 

(for cm  ) is: 

 ( )
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−
  

The hardening/softening function in tension Ωt  is represented by the linear softening function. So, 

it is assumed that the behavior of concrete in tension up to the value of tf  is elastic. After reaching tf  

the stresses are decreased to the level of residual stress in tension Ωtr that corresponds to the value of 

equivalent plastic strain tr . With further deformation, the material is considered to be completely 

fractured and is only exhibits a residual frictional strength similar to granular cohesion-less materials. 
In the case of exponential softening, the hardening function in compression is the same and is 

determined by (2.4). Softening behavior is established by set of power and exponential functions 

1 1
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(Fig. 2.2). Plastic strain and corresponding stress in the point of transition from power to exponential 

softening are labeled as cu  and Ωcu , respectively. 

  
a b 

Figure 2.2 – Hardening/softening functions with exponential softening: a – in compression; b – in 
tension 

The power softening function in compression (for cm cu    ) is: 

 ( )
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Exponential softening function in compression (for cu  ) is: 
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Softening behavior in tension is described by the exponential function Ωt  where the volumetric 

energy dissipated in softening is proportional to the mode I (tensile opening mode) area specific fracture 

energy in tension ftG : 

 Ω exp ,t
ta

 
= − 

 
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To overcome mesh dependence, the fracture energy is normalized with the effective element length 

.iL  

2.1.4 Plastic potential function 
Dilatancy in concrete, that is characterized by nonlinear volume increase with shear distortion, 

cannot be correctly described by the associated flow rule [36–40]. The plastic potential function Q , that 

differs from loading surface function F , determines the direction of the plastic strain vector and leads to 
the non-associated flow rule. 

The plastic potential function defines the non-linear behavior of the material and allows to describe 
it more accurately. The plastic potential function for current stress state in Haigh-Westergaard 
coordinates can be written as: 

 ( ) 2  ,   ,g gQ B C    = + +   

where: 

1 1
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and   is the dilatancy angle. 

Both the loading and plastic potential surfaces are not closed in the region of hydrostatic compression; 
therefore, the constitutive model is unable to reliably describe inelastic response under high compression, 
close to hydrostatic. 

2.2 Validation of the constitutive model 

2.2.1 General information about numerical models 
Methods and material models used in numerical analysis should be validated by experiments and 

benchmarks [35, 41, 42]. This validation should include: 

1. basic material tests to validate the constitutive relations; 
2. structural tests to validate the ability of material model to objectively reproduce structural behavior; 
3. mesh sensitivity tests. 

For the concrete simulation, 20-node hexahedron elements with quadratic shape function 
(SOLID186) are used. Behavior and deformation of concrete are defined by the constitutive model 
described above. 

In the models, reinforcement is presented as discrete one-dimensional line elements. Deformation 
of the rebar is described by the bilinear stress-strain diagram, which involves elastic and yielding stages. 
Yielding is governed by the second invariant of the deviatoric stress tensor (J2 plasticity). Rebars are 
modeled by using a 2-nodes beam (BEAM188) or truss (LINK180) finite elements (FE) with linear shape 
function. Beam FE has both translational and rotational degrees of freedom (DOF); truss FE has only 
translational DOF. 

Interaction between solid and truss meshes occurs via shared nodes with same DOF, so there is 
a perfect bond between concrete and steel. 

The specified displacement is used as a load, which provides a more sustainable solution. The 
load, which is equivalent to the specified displacement, is calculated as a force reaction in the supports. 
Also, to overcome convergence difficulties stabilization is used, that means adding artificial damping 
proportional to pseudo velocity in each node. As shown by the computations, the stabilization energy is 
negligible compared to strain energy, so the use of artificial stabilization is acceptable. 

2.2.2 Basic material tests 

Under uniaxial compression (Fig. 2.3), if the relative axial stress doesn’t exceed the value Ωci , the 

behavior of concrete is elastic. The initiation of hardening behavior with values above Ωci  is associated 

with the accumulation of microcracks. 

Normal concrete behaves almost elastically up to about 30-40% of cf , so the value Ω 0.3 0.4ci =   

is commonly used. To more accurately determine the value of Ωci , the following formula can be used 

[32, 33]: 

 

1.855

Ω .
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c c

f

f f


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The peak strain 1c  at uniaxial compressive strength, following the recommendations [23, 33], can 

be defined as the minimum of two values: 

 0.31
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0.0022,
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Plastic strain at the peak strength point and at the transition point can be calculated as: 

 ( ) 11 ;
pl pl c
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f
f

E
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E


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where ,c lim  can be taken from Table 2.1 or calculated by the formula [34]. 

Table 2.1 – ,c lim  for various concrete grades 

Concrete grade C20 C40 C60 C80 

3
, 10c lim   4.2 3.3 2.8 2.4 

After the peak strength cf  concrete demonstrates softening behavior which is described by 

descending part of  −  diagram. Note that information about the softening behavior in the standards 

is almost not presented. The CEB-FIP Model Code recommendations [34] offer two approaches for the 
description of softening behavior: using linear or polynomial-exponential law. Menetrey-Willam 
constitutive model is able to cover both techniques. 

  

a b 

Figure 2.3 – Stress-strain relationship in uniaxial compression: a – with linear softening; b – with 
exponential softening 

For exponential softening there is no information about residual compressive relative stress; based 

on the diagram from the standards [34] this value is about ,Ω 0.05cr exp = . Suitable value of strain at the 

transition from power law to exponential softening ,Ωc lim  is about 0.5…0.7. 

Residual compressive relative stress ,Ωcr lin  in case with linear softening is equal 0.2 [34]. Ultimate 

strain in compression ult  depends on the strength grade of concrete; it can be determined by formula 

1ult cn =  , where n  – is constant for certain grade as given in Table 2.2 [34]. 

Table 2.2 – Coefficient n  to describe ultimate strain 

Concrete grade C20 C40 C60 C80 
n  3 2 1.5 1.2 

In the uniaxial tension test, the behavior of concrete is elastic up to the achievement of tensile 

strength tf  [34, 43]: 
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Post-peak behavior with exponential softening technique is dictated by the yield function in tension 

Ωt  which depends on the mode I area specific fracture energy in tension ftG  given by expression (2.5) 

and Table 2.3 [34]; with the linear softening descending part of the diagram determined by the limit value 

of strain in tension tr  and residual tensile relative stress Ωtr . 
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where 0ftG  is the base value of the fracture energy, cf  is the uniaxial compressive strength in MPa. 

Table 2.3 – Fracture energy values for several concrete grades 

Max. aggregate size 

,mmmaxd  
2

0 , N×m/mftG  

2, N×m/mftG  

C20 C40 C60 C80 

8 25 50 70 95 115 

16 30 60 90 115 135 

32 58 80 115 145 175 

 

  

a b 

Figure 2.4 – Stress-strain relationship in uniaxial tension 

Thus, the fictitious crack in uniaxial tension test is bounded by the two following extreme points: 

1. the point where maximal tensile stress reaches tf ; 

2. the point where the tensile stress transfer ends and is the beginning of the “stress-free” crack with 

residual stress value Ωtr . 

With a biaxial stressed state, the Menetrey-Willam model is in good agreement with the model 
adopted in CEB-FIP Model Code 1990 [44]. Here it is considered that biaxial compressive strength 

1.2bc cf f=   which is well suited for normal strength concrete. 
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Figure 2.5 – Strength of concrete under biaxial stresses 

For a more precise definition, biaxial compressive strength bcf  can be calculated by the formula 

[34]: 

 .1.2
1000

c
bc c

f
f f
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One of the important properties of concrete is dilatancy [39, 40]. This property characterizes 
nonlinear volume increase associated with shear distortion of the material. Dilatation of the concrete is 
explained by the accumulation of microcracks in the inner structure of the material. Suitable parameter 
characterizing the dilatant material is the dilatancy angle. The physical interpretation of   can be 

demonstrated by a shear box test (Fig. 2.6). 

 
Figure 2.6 – Shear box test showing the effect of dilatancy 

In this test, the dilatancy angle should be considered as the uplift angle in a shear band [36]. Typical 
values of   for concrete are 8 15   [39, 40]. 
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3 Results and discussion 

3.1 Structural tests 

3.1.1 Confined uniaxial compression 
The first structural example is uniaxial compression of the cube with friction. The grade of concrete 

C40 is investigated. Data about the strength of confined cube is presented in the standards [34, 43]; for 
the grade of concrete C40, cube strength is 50 MPa. 

It is known that concrete cubes in material tests have higher strength than cylinders due to the 
smaller height and the greater influence of friction between concrete faces and steel plates. Due to 
friction, cracking is restrained, and specimen can carry higher loads. 

The geometry, boundary conditions and loading setup are shown in Fig. 3.1. Since the geometry 
has two planes of symmetry, only one quarter is modeled. The modeling is conducted with three meshes: 
coarse (592 DOF), medium (14695 DOF), fine (42669 DOF). 

 
Figure 3.1 – Details of the concrete cube model 

The input parameters for concrete C40 are presented in Table 3.1. The friction coefficient between 
the concrete specimen and steel plates is equal 0.40 [45]. 

Table 3.1 – Input parameters of Menetrey-Willam material model for concrete C40 

Parameter Value 

Young’s modulus E , MPa 36500 

Poisson’s ratio   0.2 

Uniaxial compressive strength cf , MPa 40 

Uniaxial tensile strength tf , MPa 3.5 

Biaxial compressive strength bcf , MPa 46.4 

Dilatancy angle  , ° 9 

Plastic strain at uniaxial compressive strength 1
pl
c  0.001104 

Plastic strain at the transition from power law to exponential softening ,
pl
c lim  0.003177 

Relative stress at the start of nonlinear hardening Ωci  0.4 

Residual relative stress at the point of transition ,Ωc lim  0.5 

Residual compressive relative stress Ωcr  0.05 
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Residual tensile relative stress Ωtr  0.05 

Mode I area-specific fracture energy ftG , N·m/m2 90 

The global responses of analyses for a confined cube and cylinder are presented in Fig. 3.2. 

 
Figure 3.2 – Stress-strain relationship for cube and cylinder in compression with friction 

Modeling results are presented in Table 3.2. Errors in the last column are calculated as 

 
-

Δ 100%.
Modeling Reference

Reference
=    

Table 3.2 – Results for confined compression of cube 

Criteria Ref. Mesh Model Error, % 

Cube strength, kN 50 

Coarse 51.68 3.36 

Medium 50.44 0.88 

Fine 51.36 2.72 

Numerical model can describe the increase of compressive strength and peak strain which is the 
result of the action of friction on specimens of different geometric shapes. 

The obtained compressive strength (is about 51 MPa) is in good agreement with data from the 
standards and does not depend on mesh size. 

3.1.2 Four-point bending test of a RC beam 
The second structural example is a four-point bending test of a reinforced concrete beam reported 

in [46]. The geometry, boundary conditions and loading setup are shown in Fig. 3.3. Since the geometry 
has two planes of symmetry, only one quarter is modeled. The modeling is conducted with three meshes: 
coarse (6661 DOF), medium (19499 DOF), fine (54963 DOF). 
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Figure 3.3 – Details of RC beam model 

The input parameters for concrete are chosen as  E = 30000 MPa,   = 0.18, 35cf =  MPa, 

3.2tf =  MPa, 40.8bcf =  MPa, 1 0.0022c = , , 0.0037c lim = , 70fG =  N·m/m2. All other parameters 

are set to their default values described in table 3.1. 
Table 3.3 – Input parameters of elastoplastic material model for steel rebars 

Parameter Value 

Young’s modulus E  [MPa] 200000 

Poisson’s ratio   0.3 

Yield stress ( )Ø12y  [MPa] 650 

Yield stress ( )Ø6y  [MPa] 330 

The global responses of analyses and experimental results are compared in the form of load-
deflection curves presented in Fig. 3.4. 

 
Figure 3.4 – Load-displacement curves for four-point bending test of RC beam 

Modeling results are presented in 3.4. 
Table 3.4 – Results for four-point bending test of RC beam 
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Criteria Ref. Mesh Model Error, % 

Load capacity, kN 140.10 

Coarse 123.76 11.66 

Medium 124.76 10.95 

Fine 124.68 11.01 

Cracking load, kN 35.20 

Coarse 37.35 6.11 

Medium 33.51 4.80 

Fine 34.46 2.10 

Average calculated load capacity is about 124.4 kN, which is 11.21% lower than the experimental 
data (140.1 kN). Note that the ultimate load obtained by the authors with according to standard ACI 440-
2R-08 is 125 kN and differs from the modeling result by 0.6%. 

During the experiment, the load corresponding to the appearance of the first crack crP =35.2 kN 

was also observed. The appearance of a crack in the simulation corresponds to the break point of the 
curve when the rigidity of the system begins to fall due to the accumulation of significant plastic strain. 
Thus, the average calculated load at which the crack appears is 35.1 kN and differs from the experimental 
results by 0.3%. 

In general, the response of the system in modeling is more rigid than in the experiment. This can 
be explained by the existence of microcracks and imperfections of the specimen, which are not 
considered by the model. Note also that the structural response obtained with the model is mesh 
independent. 

3.1.3 Three-point bending test of a notched concrete beam 
The third structural example is a three-point bending test of a notched beam reported in [47]. 
The beam is made of plain concrete and has no reinforcement. The geometry, boundary conditions 

and loading setup are shown in Fig. 3.5. Since the geometry has two planes of symmetry, only one 
quarter is modeled. The modeling is conducted with three meshes with a different number of segments 
above the notch: coarse with 2 segments (3334 DOF), medium with 3 segments (9432 DOF), fine with 4 
segments (40469 DOF). 

 
Figure 3.5 – Details of the plain concrete beam model 

The input parameters are chosen as  E = 36500 MPa,   = 0.20, 40cf =  MPa, 3.33tf =  MPa, 

46.4bcf =  MPa, 1 0.0022c = , , 0.0037c lim = , 124fG =  N·m/m2. All other parameters are set to their 

default values described in Table 3.1. 
The global responses of analyses and experimental results are compared in the form of load-

deflection curves presented in Fig. 3.6. 
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Figure 3.6 – Load-displacement curves for three-point bending test of the notched beam 

Modeling results are presented in Table 3.5. 
Table 3.5 – Results for three-point bending test of the notched beam 

Criteria Ref. (aver.) Mesh Model Error, % 

Load capacity, N 762.96 

Coarse 803.68 5.34 

Medium 782.60 2.57 

Fine 723.24 5.21 

Peak deflection, mm 0.369 

Coarse 0.411 11.38 

Medium 0.371 0.54 

Fine 0.331 10.30 

The results of the experiments are different due to the effect of concrete heterogeneity and location 
of aggregate particles on tensile strength and fracture energy. Peak load and deflection for the upper test 
curve is 804.14 N and 0.395 mm, respectively; for lower curve is 721.78 N and 0.343 mm. 

The simulation results correlate well with the range of the experimental data: peak load varies from 
723.24 N to 803.68 N, midspan deflection varies from 0.331 mm to 0.411 mm. Postfailure behavior 
corresponds to the experimental data too. Note that mesh size influences the results but within the range 
of the test data. 

3.1.4 Eccentric compression of a RC column 
The fourth structural example is compression of a reinforced concrete column subjected to a 

compressive force reported in [48]. The force acts with an eccentricity equal to 1/10 of the cross-sectional 
width. In the reference article, many experiments with various transversal reinforcement and concrete 
grades are presented. Here only one case with the distance between transversal rebars equal to 50 mm 
is considered. 

The geometry, boundary conditions and loading setup are shown in Fig. 3.3. Since the geometry 
has a plane of symmetry, only one-half is modeled. The modeling is conducted with three meshes: coarse 
(14598 DOF), medium (29995 DOF), fine (73153 DOF). 
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Figure 3.7 – Details of RC column 

The concrete properties are defined from the uniaxial compression test (Fig. 3.8). Linear softening 

is used to describe post-peak behavior. The input parameters are chosen as  E = 30000 MPa,   = 0.20, 

30cf =  MPa, 2.4tf =  MPa, 35bcf =  MPa, 
3

1 2.47 10c
−=  , 0.0151ult = , Ω 0.7ci = , 

( )Ø12 560yf =  MPa, ( )Ø6 310yf =  MPa. All other parameters are set to their default values described 

in Table 3.1, 3.3. 

 
Figure 3.8 – Uniaxial compression test performed in [39] 

In this example one feature is detected. The solver cannot obtain the numerical solution of the post-
peak response with LINK180 finite elements. For reinforcement modeling in this problem element 
BEAM188 is used with bending and shear stiffnesses because it provides more sustainable solution after 
failure. 

In the experiments the lateral deflection value in the middle of the column height is measured. The 
global responses of analyses and experimental results are compared in the form of load-deflection curves 
presented in Fig. 3.9. 
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Figure 3.9 – Load-displacement curves for compression of RC column 

From a series of experiments, it was obtained that the peak force is 617.6±18.7 kN and peak 
midheight deflection is 3.84±0.18 mm. 

Modeling results are presented in Table 3.6. In the modeling the obtained average load capacity 
value is 659.7 kN and the deflection is 4.43 mm; the error with the mean experimental values is about 
7% and 15%, respectively. After the deflection is equal to 8 mm, the solver cannot obtain the solution 
since all reinforcement is yielded and the concrete is completely failed in the compression side. 

Table 3.6 – Results for RC column compression  

Criteria Ref. (aver.) Mesh Model Error, % 

Load capacity, kN 617.60 

Coarse 669.16 8.35 

Medium 642.96 4.11 

Fine 666.98 8.00 

Midheight deflection, mm 3.84 

Coarse 4.21 9.64 

Medium 4.42 15.10 

Fine 4.67 21.61 

Overall, the modeling describes the deformation with good accuracy but slightly overestimates the 
ultimate load and deflection. 

3.1.5 Shear rupture test 
The fifth structural example is the shear rupture test reported in [49]. The objective of the test is to 

create a zone of pure shear stress state in a concrete specimen which is under compression as shown 
in Fig. 3.10. 

 
Figure 3.10 – Formation of a pure shear zone in the specimen 
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The geometry, boundary conditions and loading setup are shown in Fig. 3.11. Despite that the 
geometry is an axisymmetric, a full-size model was created. The modeling is conducted with three 
meshes: coarse (24124 DOF), medium (39756 DOF), fine (167997 DOF). 

 
Figure 3.11 – Details of rupture concrete specimen 

The input parameters are chosen as  20000E =  MPa,  0.2 = , 20cf =  MPa, 1.2tf =  MPa, 

23.6bcf =  MPa, 1 0.0022c = , , 0.0042c lim = , 50fG =  N·m/m2, Ω 0.216ci = . All other parameters are 

set to their default values described in Table 3.1. 
The global responses of analyses and experimental results are compared in the form of load-

displacement curves presented in Fig. 3.12. 

 
Figure 3.12 – Load-displacement curves for a shear rupture test 

Modeling results are presented in Table 3.7. The simulation showed good agreement with the 
experiment: the peak load is 5% higher; the peak displacement is 7% lower. 
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Table 3.7 – Results for the shear rupture test 

Criteria Ref. Mesh Model Error, % 

Peak load, kN 151.76 

Coarse 164.37 8.31 

Medium 157.08 3.51 

Fine 157.96 4.09 

Peak deflection, mm 0.495 

Coarse 0.493 0.40 

Medium 0.464 5.88 

Fine 0.422 14.40 

The more rigid response of the system in modeling is probably caused by the lack of initial data 
(only cylindrical strength is given in [49]) and possible initial microdamage in the specimen. Besides, 
some discrepancy is in the boundary conditions: in the simulation, the outer surface of the sample is fixed 
from radial and vertical displacement; while in the experiment, there is some flexibility in the radial and 
vertical directions. 

3.1.6 Push-off test of an S-shaped specimen 
The sixth structural example is the push-off test of the S-shaped RC specimen reported in [50]. The 

push-off specimen was first developed by Mattock and Hawkins [51] to investigate the relationships 
between material, geometric properties and shear strength. As a result of these investigations an 
empirical Hawkins model was developed and then was improved [51]. 

In the specimen subjected to compression a direct shear plane is formed (Fig. 3.13). Since whole 

compressive pressure is transmitted through the shear plane, so the average shear stress  a is obtained 

by dividing the force reaction vR  by the vertical plane area bd : /a vR bd = . 

The geometry, boundary conditions and loading setup are shown in Fig. 3.13. The modeling is 
conducted with three meshes: coarse (8547 DOF), medium (25804 DOF), fine (78244 DOF). 

 
Figure 3.13 – Details of S-shaped specimen 

The input parameters are chosen as  E = 20000 MPa,   = 0.24, 37.6cf =  MPa, 2.4tf =  MPa, 

43.71bcf =  MPa, 1 0.0022c = , , 0.0041c lim = , 120fG =  N·m/m2, Ω 0.4ci = . All other parameters are 

set to their default values described in Table 3.1. 
The global responses of analyses and experimental results are compared in the form of average 

shear stress-slip curves presented in Fig. 3.14. 
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Figure 3.14 – Stress-slip relationship for push-off test 

In the experiment, decreasing shear stress is slow, whereas in the simulation stress decreases 
suddenly since concrete has completely lost its strength and rebars yield. Modeling results are presented 
in table 3.8. 

Table 3.8 – Results for push-off test 

Criteria Ref. Mesh Model Error, % 

Max. shear stress, MPa 6.94 

Coarse 7.00 0.86 

Medium 6.88 0.86 

Fine 6.39 7.93 

Peak deflection, mm 1.48 

Coarse 1.33 10.14 

Medium 1.33 10.14 

Fine 1.00 32.43 

Residual shear stress, MPa 3.35 

Coarse 3.02 9.85 

Medium 3.28 2.09 

Fine 3.34 0.30 

Shear stress calculated based on simulation matches experimental data well enough: both 
maximum and residual shear stress has average errors about 3%. Peak slip is less consistent with the 
experiment: average error is 18%. 

4 Conclusions 

The Menetrey-Willam model is an advanced constitutive model for concrete where the loading 
surface depends on three invariants of stress tensor, hardening and softening functions, plastic potential 
function. Despite strong theoretical and experimental background, the model contains some parameters 
which limit its wide applicability. So, a method of model calibration and setup for concrete was presented 
in this study. Most of the model parameters were taken directly from the CEB-FIP Model Code. 

The proposed method has been further verified on basic material tests by a single element 
simulation. Full compliance of the simulation results with the standards for some stress states is shown. 

Finally, the method was validated based on six tests with plain and reinforced concrete structures. 
The results showed that the Menetrey-Willam constitutive model with the proposed parameters can 
predict stress-strain state with good accuracy. 
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