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Abstract: 

The research object was a spatial cantilever statically determinate truss composed of three planar 
trusses with a triangular lattice. The spectrum of natural frequencies of the structure was analyzed. The 
same concentrated masses model the inertial properties of the truss at the nodes. The task was to obtain 
an analytical dependence of the lowest vibration frequency of a truss on the number of panels, mass, 
linear dimensions of the structure, and material properties. Method. The induction method and the Maple 
computer mathematics system operators were used to determine the forces in the rods and generalize 
the result to an arbitrary number of panels. The problem was solved using the Dunkerley approach, which 
gives a lower frequency estimate. Maxwell-Mohr's formula determines the rigidity of the structure. 
Homogeneous linear recurrent equations were compiled and solved to find the common members of the 
sequences of coefficients in the formula for the frequency. Results. The accuracy of the formula obtained 
by the Dunkerley method was estimated from comparison with a numerical calculation of the entire 
spectrum of natural frequencies. The comparison shows the good accuracy of the derived formula. As 
the number of panels increases, the accuracy of the lower estimate increases too. The same frequency 
for all trusses was found in the spectra of trusses with a different number of panels. This frequency is the 
spectral constant and depends only on the size of the system, the stiffness of the members, and the 
mass. The existence of spectral isolines with the property of asymptotically tending to a certain constant 
value was shown. 

1 Introduction 

Frequency analysis of structures is a necessary component of any dynamic analysis. In cases 
where only the first (fundamental) frequency is required to calculate the performance of the system, it 
does not make sense to calculate the entire spectrum. Numerical methods are used to calculate natural 
frequencies [1]–[5]. With the development of systems of computer mathematics [6], [7], it became 
possible to obtain an analytical expression for the first frequency, depending on the size, mass, and 
properties of the material of the structure. In [8]–[12] compact formulas were obtained for calculating the 
rigidity of some plane statically definable trusses. Based on these formulas, solutions for vibration 
frequencies are obtained. Frequency analysis of bridge trusses is also performed when examining steel 
bridges, including operated railway ones, where periodic dynamic loads are especially significant [13]. 
Accurate calculation of natural vibration frequencies is also very important in seismic analysis of buildings 
and structures [14]–[17]. In road construction, natural vibration frequencies using design formulas are 
required when assessing the dynamic coefficient of the road surface [16]. 

In analytical calculations of natural frequencies, two types of solutions can be distinguished. Most 
often, semi-empirical or approximate formulas are used. For example, the method of equivalent structural 
stiffness is used to calculate the vibration frequency of a girder [4], [18], [19]. For this, the rigidity of the 
truss is equated to the rigidity of the equivalent beam, for which its natural frequency is determined by 
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the methods of resistance of materials. Another type of solution relates to regular structures with a 
periodic structure, in particular to trusses. Here, by induction, you can obtain a solution for a whole class 
of structures by entering as a parameter the number of periodic elements, for example, panels, or the 
number of rods. If the construction is statically definable, then the analytical solution has the form of a 
relatively simple formula [20]. Hutchinson, R.G., Fleck, N.A [21] and Zok, F.W., Latture, R.M., Begley, 
M.R.[22]. Analytical solutions can be used in optimization problems [15], [23]–[26], for a preliminary 
assessment of the properties of the designed structure. 

In this paper, we consider the spectrum of natural vibrations of the spatial model of the console, the 
inertial properties of which are modeled by lumped masses in the hinges. The formula for the first 
frequency is displayed depending on the number of panels. We use Donkerley's approximate approach, 
which gives a lower bound for the first vibration frequency [27]–[29]. 

2 Methods 

2.1 The scheme of the truss. The Dunkerley’s formula 

The cantilever truss is fixed on a spherical support A, cylindrical B, and on a horizontal rod at the 
lower belt node C (Fig. 1). 

 

Fig. 1. Truss, n=5 

The sides of the truss are two identical planar trusses with a triangular grid. The upper horizontal 
truss panel is a truss with a rectangular grid. In a truss with n panels, counting along the upper belt, 

9 6N n= +  rods. This number also includes six support rods, the deformations of which we will neglect, 

considering them to be rigid. A similar spatial rod system was used in [19] to simulate antenna 
oscillations. 

The mass of the truss is distributed among its nodes. It is assumed that the displacements of the 

nodes are vertical. The number of system degrees of freedom in this setting is equal to 3K n= . 

To obtain the desired frequency dependence on the number of panels, we use the approximate 
Dunkerley method [20] 
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where 
p  is the partial frequencies. The equation of oscillations of one mass has the form 

0,p p pz Dm z+ =
 
p=1,...,K, (2) 

 Here 
pz  is the vertical coordinate of the moving mass, 

pz  is its acceleration. The stiffness 
pD  is 

the inverse of the flexibility 1/p pD= , which depends on the position of the mass on the truss, and is 

calculated by the Maxwell-Mohr's formula 
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The following symbols are introduced: ( )p
jS – the force in the member with the number j from the 

action of the vertical unit force applied to the node where the mass is located, jl  – the length of the rod 

j. Each mass has its own stiffness coefficient and its own (partial) frequency. In the case of harmonic 

oscillations sin( )p pz U t=  +  from (2) follows / .p pD m=  Substituting this expression in (1), we 

get: 
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2.2 Calculation the forces in the members 

To determine the rigidity of the structure, you will need to calculate the forces in the members. To 
do this, use the program in the language of computer mathematics Maple [6], [7]. The program includes 
a method for cutting out nodes. The matrix of the system of equilibrium equations of the nodes is compiled 
from the data on the coordinates of the hinges. Nodes (hinges) and rods are numbered (Fig. 2). The 
origin is selected in the support A. In this case, the coordinates have the form: 
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Fig. 2. Numbers of truss nodes and rods, n = 3 

The order of the connections of the truss members is set by ordered lists iT , 1,...,i N= , containing 

the node numbers at the ends of the members. The longitudinal horizontal members of the belts are 
encoded as follows: 

1

2 1

[ , 1], 1,.., 1,

[ , 1],

[ 2 1, 2 2], 1,..., .

i

i n

i n

T i i i n

T i n i n

T i n i n i n

+ −

+ −

= + = −

= + + +

= + + + + =

 (6) 

The members of the grid panels are coded: 

1

1

[ , 3], 1,.., , 3, 4,

[ , 2 4], 1,.., , 5,6.
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These data are used to calculate the guiding cosines of the unknown forces that make up the matrix 
of the equilibrium equations of the nodes in the projections on the coordinate axis. The resulting system 
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of linear equations is solved in symbolic form in the Maple system. Calculations show that for an arbitrary 

number of panels, the solution for the coefficient   in (4) has the form 

( ) ( )3 3 3 3 2
1 2 3 4 /n C a C b C c C d EFh = + + + . (8) 

The coefficients , 1,..,5iC i =  depend on the number of panels n. We have the following expressions 
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Using the rgf_findrecur and rsolve operators of the Maple system, you can find common terms of 

coefficient sequences: 

3
1 2 3 4(3 1) / 8, (5 4 ) / 2, (4 5 ) /16, ( 1) / 4.C n C n C n C n= + = + = + = +  (10) 

Taking into account (4), we get from here the desired dependence of the first frequency on the 
number of truss panels and its size: 

3 3 3 3 3 3 3 3 3
4 .
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2.3 Numerical verification 

Formula (11) is an analytical approximate solution of the problem, an estimate from below. The 
error of the formula can be estimated by comparing it with the numerical solution of the problem of the 

oscillation of a system with 3K n=  degrees of freedom. 

The solution of the natural frequencies spectrum problem of system oscillations with many degrees of 
freedom is reduced to the eigenvalue problem. The system of differential equations of structure vibrations 
with K number of degrees of freedom is written in matrix form: 

0,K Km + =I Z D Z  (12) 

where Z  is the vector of all vertical mass displacements at the truss nodes, Z  is the acceleration vector, 

KI  is the unit matrix, and KD  is the stiffness matrix. For harmonic oscillations with frequency, the relation 

2= −Z Z  is valid. The matrix KD  is the inverse of the flexibility matrix KB , whose elements are 

calculated using the Maxwell-Mohr formula: 

6
( ) ( )

,

1

/ ( ).
N

i j

i jb S S l EF
−

  

=

=  (13) 

 If we multiply (9) by KB , we get the eigenvalue problem: ,K = B Z Z  where 
21/ ( ) =    are the 

eigenvalues of the matrix KB . For n=1, the matrix has the form 
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 It is not possible to get eigenvalues in analytical form. The eigenvalues of the matrix are 
determined numerically in the Maple system by the Eigenvalues operator from the LinearAlgebra 
package. 

3 Results and Discussion 

3.1 Example of the calculation. The spectral constant. Spectral isolines 

 Consider a steel truss with masses 1200m kg=
 at the nodes. Take modulus of elasticity 

52.1 10 MPaE =  , 
250.0smF = , a = 3m, h = 0.4 m, b =1.5 m. Spectra of twelve trusses are marked in 

figure 3. Frequency spectra in ascending order, then the k-axis – number of frequencies. The points of 
the individual spectra are connected by conditional polylines n=1, n=2,..., n=12. We note some of the 
detected patterns of frequency distribution in the spectrum. First, it is the coincidence of frequencies for 
different trusses. Starting with a truss with three panels, all frequencies numbered 2n+1 in each spectrum 

are equal ( ) 1
2 1 203.37 , 3,4,...k
n s k−
+ = = . This frequency is called the spectral constant of the set of 

regular trusses. The upper index in parentheses indicates the number of panels in the truss, the lower — 
the number of frequencies in the spectrum. Secondly, the highest frequency of vibration is almost 
independent of the number of panels. Also, regardless of the number of panels in the truss, there is a 

sharp jump in the frequency distribution between the values ( )
2
k
n  and ( )

2 1
k
n+ . Another interesting property 

of the spectrum of the regular truss under consideration is almost imperceptible. We introduce the 
concept of a spectral isoline — a curve in the axes "number of panels – frequency", each point of which 

corresponds to a frequency with a number 2n r+ , 2 1,...,r n n= − +
 in the spectrum (Fig. 4). The 

numerical calculation shows that when 0r   the spectral isolines asymptotically tend to a horizontal line 

parallel to the isoline of the spectral constant. A similar picture of the asymptotic tendency can be 

constructed for 0r  . 

 

Fig. 3. Spectra of natural frequencies of trusses n = 1,2,.., 12 



Construction of Unique Buildings and Structures; 2021; 94 Article No 9402 

 

Kirsanov M., Vorobyev O. 
Calculating of a spatial cantilever truss natural vibration frequency with an arbitrary number of panels: analytical solution; 2021; 
Construction of Unique Buildings and Structures; 94 Article No 9402. doi: 10.4123/CUBS.94.2 

 

Fig. 4. Isolines of natural frequencies spectra of trusses n = 4,..., 18 

 Let us consider separately the value of the first frequency and compare it with the solution (11). 

Figure 5 shows the dependence of the frequency 1 , obtained numerically, and the frequency D  
by 

formula (11) on the number of panels with the same data as in Figure 3. The Dunkerley curve is regularly 
located below the numerical solution, approaching it with an increase in the number of panels. 

 

Fig. 5. Comparison with numerical calculation 

 For large n, the curves almost merge and it is difficult to estimate the nature of the convergence 

of the curves. Let us introduce a value 1 1( ) /D =  −   to estimate the relative error of the solution. 
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Figure 6 shows the curves of the dependence of the error on the number of panels at three values of the 
height h. 

 

Fig. 6. Relative solution error 

 Except for a small spike at the beginning, at n=1, n=2, it can be seen that with an increase in n, 
the error   first falls quickly, and then slowly, reaching quite satisfactorily an accuracy of several percent. 

Thus, the resulting analytical solution, in comparison with the numerical one, behaves in some sense in 
the opposite way. The numerical solution with an increase in the order of systems of equilibrium equations 
naturally loses accuracy due to the inevitable accumulation of rounding errors and requires more 
computational resources. The constructed analytical solution with an increase in the number of panels n 
gives greater accuracy. 

Formula (11) gives a solution to the problem. A comparison of the solution with the numerical one 
obtained without using the approximate Dunkerley approach from the analysis of a system with many 
degrees of freedom revealed its high accuracy. At the same time, consideration of the entire spectrum of 
natural oscillations revealed several interesting properties of the frequency spectrum of the studied 
regular system. Some properties of the spectrum can be used in practice. So, for example, if you want 
to find the highest frequency of vibrations in a truss with a large number of panels, then using the fact 
that the value of this frequency changes slightly when n changes (increases), you can get its lower bound 
on the highest frequency obtained at n=1 from the values of the eigenvalues of the matrix (14).  

Note that an alternative to the Dunkerley method in such problems is the Rayleigh [30] method, 
which gives an upper bound for the first oscillation frequency. The accuracy of this method is noticeably 
higher; however, in practice, the formulas obtained turn out to be very cumbersome and inconvenient to 
use. 

4 Conclusions 

Main results of the work are as follows. 
1. The dependence of the fundamental frequency of natural oscillations of the truss on the number 

of panels is obtained in an analytical form by the method of induction with the involvement of a computer 
mathematics system based on the Dunkerley approach. 

2. The accuracy of the solution increases with the number of panels, which allows us to use the 
resulting formula to evaluate numerical solutions for a large number of panels, i.e. in cases where the 
numerical solution is most time-consuming, and the possibility of counting errors is highest due to the 
accumulation of rounding errors. 

3. In the frequency spectrum, a frequency is found that is the same for trusses with any number of 
panels (spectral constant). 
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4. Based on the numerical analysis of the frequency spectra, the existence of spectral isolines is 
shown. 
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