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Abstract: 

The object of the research is a planar, externally statically indeterminate truss with a cross-
shaped lattice. The truss has supports at the ends and in the middle. The dependence of the lowest 
frequency of vibrations of the truss is found under the assumption that the mass of the structure is 
concentrated in its nodes. Both horizontal and vertical displacements of nodes are taken into account. 
Method. The reactions of the supports and the forces in the rods are found in an analytical form by the 
method of cutting nodes in the Maple computer mathematics system. The stiffness matrix is calculated 
using the Maxwell-Mohr formula. The results of calculating the first natural frequency by the Dunkerley 
method of a series of solutions for trusses with a different number of panels are generalized by induction 
to an arbitrary number of panels. Results. A comparison of the analytical expression for the first 
frequency with the lowest value of the natural oscillation spectrum obtained numerically shows the high 
accuracy of the derived formula. It is noted that with an increase in the number of panels, the accuracy 
of the approximate analytical solution increases, reaching several percent with the number of panels in 
each span of more than twenty.  

1 Introduction 

One of the main characteristics of the dynamics of the structure is its first (lowest) natural frequency. 
The calculation of the natural frequencies of structures is of particular importance for their seismic safety 
[1]–[4]. If the construction has many degrees of freedom, then the calculation of the spectrum of natural 
oscillations, as a rule, is reduced to using a numerical method based on the finite element method [5]–
[10]. Analytical solutions obtained in computer mathematics systems are a good control of the accuracy 
of a numerical solution. For regular systems with periodically repeating constructive parts, an inductive 
method of generalizing partial solutions to an arbitrary order of regularity is used. Thus, for example, 
deflections of some schemes of planar [11]–[14] and spatial [15] trusses are found depending on the 
number of panels.  The calculation of the natural oscillation frequencies in the analytical form in the Maple 
[16], [17]  system is obtained in [18]–[20]. Analytical solutions are especially important for evaluating 
numerical solutions for systems with a large number of elements, in the calculations of which errors of 
accumulated rounding and a sharp increase in counting time are especially evident. General questions 
of the existence and calculation of statically determinate regular systems are considered in  [21]–[23].  In 
the monograph [24], algorithms for calculating both the statics and dynamics of regular trusses, including 
statically indeterminate ones, are given, the concept of biregularity of the structure (truss, cross beam 
system, etc.) is introduced. The mathematical basis used in this work is the difference calculus. In [25], 
the existence of spectral constants (frequencies that are the same for regular trusses of different orders) 
and spectral isolines for a spatial regular cantilever truss is shown. Nonlinear problems of calculating 
trusses were solved in the numerical form [26]–[29]. Algorithms for calculating regular rod systems and 
in the system of computer mathematics are given in [30]. Methods for analyzing the deformation of rod 
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elastic systems of a regular structure are studied in [31]. Small elastic vibrations of plane trusses of an 
orthogonal structure are considered in  [32]. 

2 Materials and Methods 

2.1 Truss scheme. Calculation of the compliance matrix 

Let's consider a planar model of a truss of a two-span continuous bridge. The truss with a cross-

shaped grid has two movable and one fixed hinge support (Fig. 1) and contains 8 4n = +  members, 

where n is the number of panels in one span. The length of each span is (2 1) / 2a n − . The construction 

is statically determinate, but the four reactions of the supports cannot be found from the truss equilibrium 
equations. The additional support creates an external static indeterminacy. The reactions of the supports 
are obtained together with the forces in the rods from the system of algebraic equations of equilibrium of 
the nodes. To obtain an analytical solution, the symbolic mathematics of Maple and the program [33] is 
used. The coordinates of the nodes and the order of connecting the rods are entered into the program, 
just as graphs are introduced in discrete mathematics [7]. The matrix of the system of equilibrium 
equations consists of the guiding cosines of the forces in the rods, for the calculation of which information 
about the structure of the connections of the rods and the coordinates of the nodes are used. The mass 

of the truss is conditionally distributed evenly across all 0 4 1N n= −  nodes, not including the three support 

nodes here. Given that each such node has two degrees of freedom, the system under consideration 

has 02N N=  degrees of freedom in this formulation. 

 

Fig. 1 – Truss, n=5       

We will write the system of equations of cargo movement in matrix form 

0N N+ =M U D U , (1) 

where  1[ ,..., ]TNu u=U – displacements of masses, ND  – stiffness matrix, NM  – inertia matrix, U  – 

acceleration vector. In the case of identical masses, the inertia matrix is proportional to the unit matrix 

N Nm=M I . The stiffness matrix ND  can be calculated as the inverse matrix of the compliance matrix 

NB , the elements of which are found by the Maxwell-Mohr formula 

4
( ) ( )

,

1

/ ( ).i j
i jb S S l EF

−

  

=

=  
(2) 

Here, the summation is carried out for all the rods, except for the four supports ones, which are 

conditionally rigid. The designations are introduced: 
( )iS  

is the force in the member from the action of a 

single force at node i in the direction of vibrations, EF  is the stiffness of the rods, l  is the length of the 

member  . To determine the forces, the program [33] is used in the Maple language [16]. 

If we multiply (1) by the matrix NB , then for harmonic oscillations of the form 

0sin( )k ku Ф t=  +  (3) 

with amplitudes kФ , there is a replacement 
2= −U U . The problem is reduced to the problem of 

eigenvalues for the matrix NB : ,N = B Y Y
 

where   is the natural frequency of oscillations, 

21/ ( )m =   is the eigenvalue of the matrix NB . In general, such a problem can only be solved 

numerically. 
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2.2 Dunkerley's method 

We obtain the value of the first frequency using the approximate Dunkerley method [34], which 
gives the lower bound of this value. The partial frequencies included in the solution according to the 

Dunkerley method are divided into oscillation frequencies along the x - axis ,k x  and the y - axis ,k y . 

The index k means the number of the node with mass m. The solution takes the form: 

0
2 2 2

, ,

1

( ).
N

D k x k y

k

− − −

=

 =  +  
(4) 

Equation (1) in the case of oscillations of one mass has a simple scalar form: 

0, 1,..., ,k k kmu d u k N+ = =  (5) 

where ku  is the displacement of the mass, ku  is the acceleration, kd  is the stiffness coefficient. The 

frequency of vibration of the load is /k kd m = . The stiffness coefficient is determined by the Maxwell-

Mohr formula (2), which in this case has a simplified form: 

( )
4 2

( )

1

1/ / ( ).k
k kd S l EF

−

 

=

 = =  
(6) 

Here it is indicated 
( )kS  — the forces in the rod are numbered   from the action of a unit vertical 

force applied to the node where the mass numbered k is located. According to (4) we have 

0
2

1

( ).
N

D k x y

k

m m−

=

 =  =  +   
(7) 

The sums x  and y  are calculated separately. The calculation of the compliance k , 01,...,k N=
 

from the action of vertical unit forces on the nodes and summing them for a different number of panels 
shows that the overall appearance of the sum does not change 

3 3 3 2 2
, 1 2 3 ).1( ) / ((2 )y n C a C c C h Fn Eh = + + −  (8) 

The length of the brace is indicated 
2 24 .c a h= +  As a result of calculations, we obtain the following 

sequence of solutions: 
3 3 3 2

,2

3 3 3 2
,3

3 3 3 2
,4

3 3 3 2
,5

5(40 21 128 ) / (72 ),

(824 165 544 ) / (40 ),

(4368 455 1024 ) / (56 ),

(45744 2907 4960 ) / (216 ),...

y

y

y

y

a c h h EF

a c h h EF

a c h h EF

a c h h EF

 = + +

 = + +

 = + +

 = + +

 (9) 

Using the induction method involving the rgf_findrecur and rsolve operators from the special 
genfunc package of the Maple system, we obtain common terms of sequences. In this problem, the 
minimum number of trusses with a consistently increasing number of panels required to find the regularity 

of the formation of coefficients is 10. For coefficients at powers 
3 3,a c , and 

3h , we have the following 

power-type expressions: 
2 2

1

2
2

3

( 1)(2 1) (46 46 33) / 90,

(4 1)(4 3)(2 1) / 24,

4 (2 1)(7 4) / 3.

C n n n n n

C n n n

C n n n

= − − − +

= − − −

= − −

 
(10) 

Similarly, when calculating the partial frequencies of mass oscillations horizontally, we have a 
general view of the corresponding sum 

3 3 3 2 2
, 4 5 6( ) / (2(2 1 .) )x n C a C c C h Fn Ea = + + −  (11) 

The coefficients in this expression have the form 
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(12) 

3 Results and Discussion 

Formulas (7), (8), (10-12) give the following lower estimate of the first frequency:  

( )3 3 3 32 2
1 2 3 4

3
5 6

3
(2 1) .

( ) / ( ) / (2 )
D

EF
n

m C C c C h h C Ca c C h aa


+
=

+ ++
−

+
 

(13) 

The accuracy of the obtained estimate can be determined by comparing the entire natural 
frequency spectrum of the structure with the first frequency. For the numerical solution of this problem, 
the Maple system has the Eigenvalues operator. Figure 2 compares the first frequency obtained by the 
formula (13) and the lowest frequency of the entire frequency spectrum. The following design parameters 

are taken: 
52 10 MPaE =   — the elastic modulus of the rod material, 

22.0 smF =  — the cross-sections 

of the rods,  300 kgm = . The following dimensions are taken:  4.0 m,    3.0 ma h= =  . With an increase 

in the number of panels, the dependence curve was obtained numerically and the curve was constructed 
according to the formula (13) approach. 

 We introduce the value of the relative error 1 1( ) /D =  −  . Figure 3 shows that the error of the 

analytical solution is small, but with an increase in the number of panels, it decreases unevenly. 

 

Fig. 2 – Frequency dependence on the number of panels,  
I – numerical solution; II – analytical assessment 
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Fig. 3 – Dunkerley's estimation error depending on the number of panels  

The spectra of trusses with a different number of panels and with the same parameters as in the 
graphs constructed above are shown in Figure 4. Each curve connecting the points corresponding to the 
natural frequencies of vibrations corresponds to one truss of order n . The frequency numbers in the 

spectrum are plotted on the abscissa axis. Compared with the results [25] obtained for the spatial 
console, the spectra do not have the same regular structure. The family of spectra does not contain 
isolines and spectral constants. The frequencies are arranged in the spectra almost randomly. However, 
even here we can notice an implicitly expressed upper bound of frequencies and a lower inclined bound 
with an angle of inclination decreasing with the growth of the largest order of the considered set of regular 
trusses. The absence of a regular structure of the family of spectra in this problem can be explained by 
the fact that the spectra contain the oscillation frequencies of individual masses both vertically and 
horizontally. These frequencies have a different nature, which can be seen by comparing formulas (8) 
and (11). In one case, the denominator of the sum is the vertical size, in the other — horizontally. The 
horizontal and vertical stiffness of the truss is significantly different. In [25] the problem statement was 
simpler. The masses in the nodes of the spatial console moved only vertically, horizontal mass 
displacements were not taken into account 

 

Fig. 4 – Frequency spectra of a family of regular trusses 

The study of frequency patterns in the spectra and analytical expressions for the first frequency can be 
used in optimization problems of truss structures [4], [35]–[37]. The analytical nature of the solution 
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simplifies its use, and the observed increase in its accuracy with a large number of panels, i.e. just in 
cases when numerical solutions are especially unreliable, makes such solutions attractive. 

4 Conclusions 

The main results of the work are as follows. 
1. A formula for the dependence of the first oscillation frequency of a two-span truss with an arbitrary 

number of panels is obtained. 
2. It is shown that the accuracy of the found estimate increases with an increase in the number of 

panels. 
3. The picture of a family of regular truss spectra of various orders is analyzed. It is noted that there 

is an upper bound for all natural frequencies. 
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