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Abstract: 

The object of research is quadrilateral finite element based on linear approximations of moments 
for calculations thin and thick plates. Method. The additional energy functional, the virtual displacements 
principle and the moments approximations allows us to get analytically all necessary expressions of 
matrices elements. Using the virtual displacements principle, it is constructed the equilibrium equations, 
which are added to the additional energy functional. Results. The proposed method gives satisfactory 
results converging towards the reference solution as for the thin as thick plates. The locking effect for the 
thin plates is absent. It had been demonstrated the proposed finite element isn’t sensitive to the form 
distortions. The proposed method allows to calculate stiffness matrix of the finite element and to use it in 
the finite element method softs based on displacements approximations. 

1 Introduction  

Plates are the basic components for various modern engineering structures. Constructing the plate 
finite element model, we necessary consider that plates can have the various thicknesses. The finite 
element method is widely used to calculate the plates. It is very important that the plate finite element 
can be using to calculate, with equal success, the thin and thick plates. Many finite elements were 
constructed by now, but researchers are still being conducted to obtain other elements. An important 
research area is the development of models for accounting the shear deformations of thick plates. 

In paper [1] the quadrilateral four node plate element, in which each node contains seven degrees 
of freedom, is considered. The plate kinematics are described using a third-order shear deformation plate 
theory, without the need for special treatment of shear-locking effect and shear correction factors. The 
accuracy of the proposed approach assessed on numerical results is confirmed by comparing the 
obtained results with respect to reference published solutions. Weak form Galerkin’s method is used for 
the development of the finite element model in article [2]. In this study is developed locking-free 
rectangular finite elements for shear deformable 2-D Mindlin, Levinson and Full Interior plates. In each 
the finite element node there is three degrees of freedom. The paper [3] presents a new simple four-node 
quadrilateral shell element with 24-dof which can be used to analyze thick and thin shell problems. This 
element which is developed from DKMQ plate element using the Naghdi/Mindlin/Reissner shell theory 
can consider warping effects and coupling bending-membrane energy. The incomplete quadratic 
interpolation functions are used for approximations of rotations. In article [4] is presented the method for 
incorporating shear flexibility into existing three-node triangular thin plate elements with particular 
relevance to finite element templates. In the paper noted that the method is not restricted to finite element 
templates and is independent of the thin plate formulation, but not all thin plate elements are suitable 
candidates for use as the parent elements of shear deformable elements. The authors of the paper [5] 
proposed two finite element methods for solving the Reissner-Mindlin plate problem. The problem is 
solved either by augmenting the Galerkin’s formulation or modifying the plate-thickness. In these 
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methods, the transverse displacement is approximated by conforming (bi)linear macro elements or 
(bi)quadratic elements, and the rotation by conforming (bi)linear elements. 

An important and developing area of research is analyses of functionally graded material isotropic 
and sandwich plates with considering the shear deformations [6]–[8]. In study [6] a weak Galerkin’s form 
was used to discretize the governing partial differential equations that are numerically solved by NURBS 
basic functions. Besides using polynomial function, any functions varying through the plate thickness can 
be used in this formulation if those functions are satisfied with the free conditions of shear stresses. 
Several examples with different geometries, stiffness ratios and boundary conditions were illustrated. 
The study [9] presents nonlinear bending analyses of functionally graded carbon nanotube-reinforced 
composite plates using the modified mesh-free radial point interpolation method. 

For the reduction of shear-locking, in article [10] used modified formulation of Mindlin's plate theory. 
In this formulation, the shear strains are incorporated as degrees of freedom in lieu of the rotational in 
the conventional Mindlin's theory formulation. The natural element method using the concept of 
hierarchical models of plate-like elastic structures was presented in [11]. The displacement field in the 
thickness direction was assumed by 1-D polynomials, while the in-plane displacement field on the mid-
surface was numerically approximated. The numerical experiments were performed to illustrate the 
proposed method and to investigate the characteristics of hierarchical models. The paper [12] deals with 
the formulation of the cell centered finite volume application for plate bending analysis based on Mindlin–
Reissner plate theory. In this formulation shape functions are used to represent the variation of the 
unknown variables across the control volumes’ faces, which facilitates the calculation of stress resultants 
on the faces. In paper noted that although the method behaves well in the test problems involving thin 
plates, however further studies are needed to investigate whether the method is shear locking-free in the 
thin plate analysis. In study [13] the discrete Kirchhoff–Mindlin theory is applied to arbitrary polygons 
using the transverse displacements and the rotations. The transverse shear effect is included by 
assuming that the tangential shear strain is constant along each edge of the polygon. The shear locking 
phenomenon is then alleviated by relating the kinematical and the independent shear strain along each 
edge of the polygon. The authors of the article [14] offer to use the modified Mindlin theory and to split 
total deflection and two slope angles of plate cross–sections into their constitutive parts, resulting with 
decomposition of plate state on flexure and transverse shear. The paper [15] is devoted to improving the 
theory of bending and vibrations of three-layer plates with transverse compressible filler and thin outer 
bearing layers. The equations of the bi-moment theory of thick plates with respect to forces, moments 
and bi-moments, created in the framework of the three-dimensional theory of elasticity, taking into 
account the nonlinearity of the distribution law of displacements and stresses over the thickness, are 
taken as the equations of motion of the filler. In the article [16] is presented calculations of composite 
plates, considering the finite stiffness of the seams and the nonlinear behavior of the materials of the 
layers by the iteration method and the sequential solution of linear equations. The alternative solution for 
the plate calculation with assuming shear deformations was presented in the articles [17]. The solution 
has been based on piecewise constant approximations of the moments and shear forces. Using the 
virtual displacements principle, the algebraic equilibrium equations was constructed independently for 
bend and shear states. The equilibrium equations with using Lagrange’s multipliers added into the 
additional energy functional. The similar approach is using in [18] for a plane elasticity problem, in [19-
21] for a bending plate analysis. 

The proposed paper aim is to construct the quadrilateral finite element based on linear 
approximations of moments for calculations thin and thick plates.  

2 Materials and Methods 

For calculation, a bending plate considering the shear deformations we shall use the additional 
energy functional for an isotropic plate (for simplicity, we assume there are no specified displacements): 

     c 2 2 2 2 2
3

2 11 12 1
2 dA dA.

2 2x y x y xy x y

k
M M M M M Q Q

Et Et





         (1) 

E is the material elasticity modulus; t is the plate thickness;  is Poisson's ratio; 6 5k   is the coefficient 
resulting from the parabolic law of tangential stress changing across the plate thickness. The functional 
(1) is can written in matrix form that is more convenient if we use a finite element method: 
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c T 11
dA.

2
  S E S  (2) 

In expression (2) the following notation is entered: 

 T .x y xy x yM M M Q QS  (3) 

In accordance with the principle of the additional energy minimum, the moments , ,x y xyM M M  and shear 

forces ,x yQ Q  must satisfy the corresponding differential equilibrium equations (4) and static boundary 

conditions. 

0, 0, 0.xy y xy yx x
x y

M M M QM Q
Q Q q

x y y x x y

   
        

     
 (4) 

Dividing the problem region into finite elements and using the moments and forces approximations, then 
we replace the differential equations (7) by algebraic equations system. For this we shall use the 
weighted residuals method. Then for the first differential equation, we can write the following equations 
of the weighted residuals method: 

, dA 0, 1,2, .
i

xyx
x x i

A

MM
Q i N

x y


 
      

   (5) 

N is the nodes number of the finite element grid; ix ,  is the weight function of node i; iA  is the area 

where the weight function is nonzero. We shall use the node weight functions which are nonzero only in 
the finite element’s region adjacent to it. Such weight functions can be called “local”. Using for (5) the 
integration procedure in parts, we obtain the following expression: 

       ,, , ,

, dA 0, 1,2, .
i

xy x ix i x i x x i

x xy x x i

A

MM
M M Q i N

x y x y

  


   
       
     
   (6) 

The two last terms in expression (6) can be transformed using the Gauss theorem [1] (integration by 
parts in the plane case) into the integral over the region boundary, then we get: 

     , ,

, ,dA d 0, 1, 2, .
i i

x i x i

x xy x x i x x xy y x i

A

M M Q M l M l i N
x y

 
 



  
          

    (7) 

i  is the area boundary where the weight function ix ,  is nonzero; yx ll ,  are direction cosines of the 

region i  boundary normal; iA  is the area of the finite elements which adjacent to node i. The expression 

(7) coincides with the term of possible displacements principle if we use the rotation angle along the X 
axis as the possible displacement. Also, the expression (7) let us to consider the static boundary 

conditions for the moments xM , xyM . The first integral in (7) is the work of the internal moments and 

forces at possible displacements, the second integral is the external moments potential, which act on the 
boundary. 

Performing similar transformations to the second and third equations (7), we obtain two more 
equilibrium equations sets: 

     , ,

, ,dA d 0, 1,2, .
i i

y i y i

y xy y y i y y xy x y i

A

M M Q M l M l i N
y x

 
 



  
       
   
    (8) 

     dA d dA 0, 1,2, .
i i i

i i
x y x x y y i i

A A

w w
Q Q Q l Q l w q w i N

x y

 
 



  
        

     (9) 

,y i  is the possible rotation angle along the axis Y (weight function); iw  is the possible vertical 

displacement (weight function); xQ , yQ  are the external forces on the boundary. If there are not the 

moments and forces distributed along the free boundary then second integrals in (7–9) are zero. 
We get algebraic equilibrium equations system (7–9) which are the limitations of the functional (2). 

The algebraic equilibrium equations system can be presented in the matrix form (10): 
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S 0. L S P  (10) 
These limitations can be included to functional by using the Lagrange's multipliers w (11): 

 c T 1 T
S

1
dA+ .

2
  S E S w L S P  (11) 

The matrix SL  lines number equal the number of all node equilibrium equations. The vector P  elements 
are defined by external loads which act to the plate. 

Note, the internal moments and forces derivatives are not come in expressions (2), (7–9), so any 
functions can be taken for the moments and forces approximations. The equilibrium equations include 
only the possible displacements first derivatives, so the possible displacements can be the linear 
functions. 

We use for the moment approximation in a finite element region the following linear functions (12): 

1 2 3 1 2 3 1 2 3, , .x y xyM a a x a y M b b x b y M c c x c y          (12) 

1 2 3 1 2 3 1 2 3, , , , , , , ,a a a b b b c c c  are unknown parameters of the approximations’ functions. Using the equations 

(4) we get the expressions of the shear forces (13): 

2 3 3 2, .x yQ a c Q b c     (13) 

So, if there is no distributed load in a finite element area, the differential equations (4) are in progress. 
We introduce the following vectors for the finite element k (14): 

   T T
1 2 3 1 2 3 1 2 3, .k x y xy x y kM M M Q Q a a a b b b c c c S a  (14) 

Then we can write the expressions (12) and (13) in matrix form (15, 16): 
1 0 0 0 0 0 0

0 0 0 1 0 0 0

, .0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0

k k

x y

x y

x y

 
 
 
  
 
 
  

S Ga G  (15) 

The specific flexibility matrix of the material has the following form: 

3 3

3 3

3

12 12
0 0 0

12 12
0 0 0

24(1 )
.0 0 0 0

12(1 )
0 0 0 0

5
12(1 )

0 0 0 0
5

k

Et Et

Et Et

Et

Et

Et











 
 
 
 
 
  
 
 
 
 
 
 
 

E  (16) 

Using (14) – (16), we get the following expression of the functional (2) for the finite element k (17): 

 c T T1
dA.

2
k

k k k k

A

   a G E G a  (17) 

The flexibility matrix of a finite element is (18): 
T dA.

k

k k

A

 D G E G  (18) 
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Fig. 1 - Dividing the finite element area by the two triangles 

For defining the matrix kD  elements it is necessary to calculate the following integrals by the finite 
element area (19): 

2 2dA, dA, dA, dA, dA.
k k k k k

x y xx xy yy

A A A A A

i x i y i x i xy i y          (19) 

If we divide the finite element on two triangles (Fig. 1), then these integrals are simple calculated 
analytically using the triangle coordinates system. Use (19) we get the matrix kD  elements expressions 

(20): 

1 1 1 2 2 2

4 1 1 2 2 2 4

1 2 2 2

1 1 1

1 1

4 1 4

4 3 3

4 3 3

4 3

0 0 0

0 0

0 0 0

0 0 0

0 0 0

0 0

k x y k x y

k xx xy x xx xy k

yy y xy yy

k x y

xx xyk

k yy k

k x y

k xx xy

k yy

d A d i d i d A d i d i

d A d i d i d i d i d i d A

d i d i d i d i

d A d i d i

d i d i

symmetrically d A d i d A

d A d i d i

d A d i d i

d A d i

 
  
 










  

D .











 (20) 

In (21) it had been introduced designations: 

   
1 2 1 3 1 43

12 112
, , 2 1 , .

5
d d d d d d

Et Et


 


       (21) 

From matrix kD it is constructed the matrix D of whole plate. Number columns and rows of matrix 

is 9 Ne . Ne  is number of finite elements. Matrix D  have the block diagonal form and it is easy converted 
(22): 

1

2 .

Ne

 
 
 
 
 
 

D

D
D

D


 (22) 

We also use linear functions for approximations of possible displacements in finite element area (Fig. 2): 

1, 2, 3, 4, , 1, 2, 3, 4,

, 1, 2, 3, 4,

, ,

, 1,2,3,4.
i i i i i x i i i i i

y i i i i i

w x y xy x y xy

x y xy i

         

    

       

    
 (23) 
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Fig. 2 - Possible displacement of a node 

To calculate the parameters ,j i  we form the following matrix: 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1

1
.

1

1

x y x y

x y x y

x y x y

x y x y

 
 
 
 
 
 

B  (24) 

If the possible displacement of node is taken equal to unity, then the parameters ,j ia  are elements of the 

inverse matrix -1B (25): 

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,41

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

.

a a a a

a a a a

a a a a

a a a a



 
 
 
 
 
 

B  (25) 

Each column of the matrix -1B  contains the approximating functions parameters for possible 
displacement of one finite element node. Each column of the matrix -1B  contains the approximating 
functions parameters for possible displacement of one finite element node. 

Now we shall calculate the equilibrium equation (7) when there is the node i possible rotation ix ,  

along axis X. The derivatives of the rotation angle will have these expressions (26): 

   , ,

2, 4, 3, 4,, .x i x i

x i i xy i ik y k x
x y

 
     

 
     

 
 (26) 

The internal forces possible work , x

k
iU   of the finite element k will get next form (7): 

       

  

, 1 2 3 2, 4, 1 2 3 3, 4,

2 3 1, 2, 3, 4,

dA dA

dA.

x

k k

k

k
i i i i i

A A

i i i i

A

U a a x a y y c c x c y x

a c x y xy

    

   

       

    

 


 (27) 

Another we can say that , x

k
iU   is contribution of finite element to equilibrium equation (7). For calculation 

of the integrals, we use the expressions (19). Then we get follow matrix term (28): 
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2, 4,
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T
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0
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i k i y
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i y i yy

k
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U
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 
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 
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 
 
     
 
 

 
  
   

C a C  (28) 

For the possible rotation ,y i  we similarly get (8): 

      

  

, 1 2 3 3, 4, 1 2 3 2, 4,

3 2 1, 2, 3, 4,

dA dA

dA.

y

k k

k

k
i i i i i

A A

i i i i

A

U b b x b y x c c x c y y
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    

   

       
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 


 (29) 

3, 4,

T
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 
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 
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C a C  (30) 

At the vertical possible displacement iw  finite element shear forces do the possible work (9): 

       , 2 3 2, 4, 3 2 3, 4,dA+ dA.
k k

k
i w i i i i

A A

U a c y b c x           (31) 
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 
 
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  
  

C a C  (32) 

Using (28), (30), (32) it can be constructed the matrix "equilibrium" of the finite element: 

T
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, .

x y x y x y x yk w w w w       
   L С C C С C C С C C С C C  (33) 
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Each matrix kL  line is the contribution of the finite element to the node equilibrium equation on 

corresponding possible displacement. From matrix kL , in accordance with nodes and finite elements 

numbering, it is formed the global equilibrium matrix L of whole plate.  
The last integral in (9) is the external loads potential which caused by possible displacement iw . 

If q  is uniformly distributed load this integral for the finite element k is calculated analytically: 

 1, 2, 3, 4, ,dA .
k

i i k i x i y i xy k i

A

q w q A i i i P          (34) 

With accordance node numbering the value ,k iP is added to the element of global vector P . Moreover, 

the concentrated at the nodes forces values ,z iP  must be added to the elements of global vector P . 

Now the functional (11) can be written in the next form (35): 

 c T T1
+ .

2
  a Da w La P  (35) 

The vector Lagrange’s multipliers w  are included the values of the node’s vertical displacements and 
rotation angles, which are free. Calculating the functional derivatives along the vectors a  and w we get 
the matrix equations system: 

T 0,

0.

 
 

Da L w

La P
 (36) 

Expressing the vector a  from the first equation and substituting it into the second equation, we obtain: 
1 T 1 T, , .   K LD L Kw P a D L w  (37) 

Expressions (12), (13) allow us to get the moments and forces values for any finite element point.  But, 
as rules, these values are calculated for finite element center. The global matrix K  also can be get as 
sum of the local matrices kK  of finite elements: 

1 1.k k k k
 K L D L  (38) 

This algorithm is the same as one of classical finite element method based on displacements 
approximations. 

3 Results and Discussion 

3.1 Levi's plates 

To verify the accuracy of the present finite element it had been calculated the rectangular plates 
with various boundary conditions (Fig. 3). It was calculated the plates with different values of the aspect 
ratio /b a  and the thickness-to-side ratio /t a .  

Fig. 3 - The support variants of the Levi's plates 
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In Fig. 3 dashed lines and the letter S denotes simply supported sides, the oblique hatching and 
the letter C denotes clamped sides, and the letter F denotes free sides. Data:

3; 1000; 0.3; 10a E q    .Boundary conditions: 0x yw      for side denote C;  0w   and 

( ) 0x y   ( ( )x y  is rotation angle along boundary side) for S; 0w   for F. Table 1 presents the calculations 

results of these plates, given in [22] for two theories, and the results obtained by the proposed method 
which is denoted MAP. The lengths of the plate sides are equal 3 or 1.5. The side 3 long was divided 
into 30 finite elements, and the side 1.5 long into 16 elements. The load is evenly distributed over the 
plate area. The calculations results are presented in Tables and Figures in dimensionless form: 

 
3

22 4

,2 2

100 1
, , , ,

2 2 2 212 1

1 1
, , , .

2 2 2

x x

y y y s y

Et a b a b
w w M M

qaqa

a b a
M M M M b

qa qa


           

       
   

 (39) 

The S-FSDT is simple first-order shear deformation theory in which the vertical displacement is 
separated into a bending and shear parts. The TV-FSDT is two variable first-order shear deformation 
theory presented in [22]. In that paper, there is used an analytical method for the calculation Levi’s plates. 
Analyzing the results given in Table 1, we must note, the decisions of the MAP method are very close to 
the TV-FSDT decisions for all plate thickness values and the boundary conditions. For all considering 
plate variants, the plate center displacement values calculated by the MAP method, are larger the values 
calculated the other methods. For the CC plate with parameters / 0.001, / 2t a a b   was received the 
biggest difference of the results. It is about 10 percenters. If the ratio /t a  increase, then the results 
difference become lower. For the plates with other parameters the results difference does not exceed 3 
percenters. In general, we note the proposal methods MAP can be used for calculations the thin and 
thick plates and the known locking effect for thin plates is absent. 

Table 1. Displacement of the plate center w  under the uniformly distributed load action 

a/b t/a Method 
Boundary conditions 

CC CS SS CF SF FF 
2 0.001 S-FSDT 0.0163 0.0305 0.0633 0.1450 0.3809 1.3713 

  TV-FSDT 0.0163 0.0305 0.0633 0.1450 0.3810 1.3714 
  MAP 0.0163 0.0305 0.0634 0.1461 0.3833 1.3701 
 0.04 S-FSDT 0.0176 0.0318 0.0646 0.1476 0.3835 1.3770 
  TV-FSDT 0.0178 0.0322 0.0646 0.1504 0.3879 1.3795 
  MAP 0.0178 0.0322 0.0648 0.1510 0.3892 1.3775 
 0.1 S-FSDT 0.0245 0.0386 0.0714 0.1614 0.3972 1.4070 
  TV-FSDT 0.0255 0.0407 0.0714 0.1721 0.4084 1.4130 
  MAP 0.0255 0.0407 0.0716 0.1726 0.4096 1.4108 
 0.2 S-FSDT 0.0489 0.0630 0.0958 0.2105 0.4464 1.5142 
  TV-FSDT 0.0525 0.0695 0.0958 0.2395 0.4692 1.5248 
  MAP 0.0526 0.0697 0.0961 0.2401 0.4706 1.5225 

1 0.001 S-FSDT 0.1917 0.2786 0.4062 0.5667 0.7931 1.3094 
  TV-FSDT 0.1917 0.2786 0.4062 0.5667 0.7931 1.3094 
  MAP 0.1924 0.2795 0.4075 0.5676 0.7937 1.3076 
 0.04 S-FSDT 0.1951 0.2819 0.4096 0.5712 0.7975 1.3151 
  TV-FSDT 0.1965 0.2830 0.4096 0.5737 0.7981 1.3154 
  MAP 0.1972 0.2841 0.4111 0.5743 0.7988 1.3135 
 0.1 S-FSDT 0.2128 0.2996 0.4273 0.5945 0.8208 1.3451 
  TV-FSDT 0.2209 0.3059 0.4273 0.6065 0.8224 1.3459 
  MAP 0.2216 0.3070 0.4290 0.6071 0.8231 1.3440 
 0.2 S-FSDT 0.2759 0.3827 0.4904 0.6777 0.9041 1.4522 
  TV-FSDT 0.3021 0.3827 0.4904 0.7139 0.9072 1.4539 
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  MAP 0.3031 0.3841 0.4923 0.7145 0.9081 1.4519 
0.5 0.001 S-FSDT 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887 

  TV-FSDT 0.8445 0.9270 1.0129 1.0605 1.1496 1.2887 
  MAP 0.8484 0.9301 1.0150 1.0600 1.1479 1.2831 
 0.04 S-FSDT 0.8497 0.9322 1.0181 1.0660 1.1551 1.2944 
  TV-FSDT 0.8511 0.9330 1.0181 1.0664 1.1547 1.2938 
  MAP - 0.8550 0.9362 1.0205 1.0661 1.1534 1.2885 
 0.1 S-FSDT 0.8770 0.9596 1.0454 1.0946 1.1837 1.3244 
  TV-FSDT 0.8850 0.9637 1.0454 1.0981 1.1829 1.3228 
  MAP 0.8888 0.9671 1.0483 1.0978 1.1819 1.3176 
 0.2 S-FSDT 0.9746 1.0572 1.1430 1.1970 1.2861 1.4316 
  TV-FSDT 1.0000 1.0704 1.1430 1.2090 1.2844 1.4283 
  MAP 1.0038 1.0741 1.1464 1.2087 1.2836 1.4231 

 

3.2 Distorted grid for square plate with hinge supports under uniform 
loading 

 

Fig. 4 - Distorted grid 8 x 8 for one quarter of square plate 

To analyze sensitive to finite element form distortion we calculated the square plate with the series 
distorted grids. The example of the distorted grid for one quarter of the plate is shown in Fig. 4. Due to 
symmetry, we will calculate only one quarter of the plate with hinge supports under uniform loading. The 
results are presented in Table 2. The designations MAP are the solutions obtained with square grids. 
Data: 12; 0.2,1, 2.4; 10; 0.3; 1L t E q     . Boundary conditions: 0xw    along sides AB and 

0yw    along sides AD. Symmetry conditions: 0x   along sides BC and 0y   along sides CD. 

Reference solution: 
2

4
2

0.00406 1 4.6c

t
w q L

L

 
    

 
. 

Table 2. Displacement  2 312 1 /c cw w E t     . 

N x N L/t=60 L/t=12 L/t=5 

2 x 2 92.03 94.57 107.17   
4 x 4 87.41 90.32 104.79   
6 x 6 85.58 88.50 102.90   
8 x 8 85.07 87.99 102.44   

10 x 10 84.80 87.71 102.13   
12 x 12 84.67 87.58 102.02   
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14 x 14 84.58 87.49 101.92   
16 x 16 84.53 87.44 101.88   
18 x 18 84.50 87.41 101.83   
20 x 10 84.47 87.38 101.81   
22 x 22 84.45 87.36 101.79   
24 x 24 84.44 87.35 101.78   
26 x 26 84.42 87.33 101.76   
28 x 28 84.41 87.33 101.76   
30 x 30 84.41 87.32 101.74   
Ref. [23] 84.30 86.88 99.68 

 

The data in Table 2 demonstrate the moments approximations way aren’t sensitive to the finite 
element form distortions. The proposed method based on the moments approximations gives satisfactory 
results converging towards the reference solution as for the thin as thick plates. For thin plate calculated 
result differ on one half percent and for thick plate on 2 percenters from the reference solution. 

4 Conclusions 

1. The quadrilateral finite element, using the two variant linear approximations of the moments, have 
been evaluated and presented in thick and thin plate problems. The additional energy functional, the 
virtual displacements principle and the moments approximations allows us to get analytically all 
necessary expressions of matrices elements for the quadrilateral finite element. Getting the equilibrium 
equations, we used only approximations of the virtual displacements but not of the valid displacements. 
2. The proposed method gives satisfactory results converging towards the reference solution as for 
the thin as thick plates. The locking effect for the thin plates is absent. It had been demonstrated the 
proposed finite element isn’t sensitive to the form distortions. 
3. The proposed method allows to calculate stiffness matrix of the finite element and to use it in the 
finite element method softs based on displacements approximations. 
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