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Abstract: 

The object of research. A new scheme of a statically determined truss in the form of a closed 
rectangle with vertical support columns along the inner contour is proposed. The cell of the regularity of 
the construction is a quadrangular rod pyramid. All cells are united along the vertices by a rod square 
contour. Four additional horizontal rod supports are located at the corners of the structure. When 
determining the deflection and forces in the critical rods, the vertical load, evenly distributed over the 
truss nodes, was considered. The derivation of the formula for the dependence of the deflection of an 
arbitrary hinge on the cantilever part of the truss on the number of panels in the truss is given. Method. 
The derivation of formulas for deflections, forces, and frequencies of free vibrations is based on an 
inductive generalization of the solution sequence for structures with a different number of panels. 
Forces are found from the solution of a system of linear equations for the equilibrium of nodes. The 
deflection and the stiffness matrix of the structure are calculated in an analytical form using the 
Maxwell-Mohr formula. To find the oscillation frequency of nodes endowed with masses, the Dunkerley 
method is used. Results. The formulas for the deflection of nodes have a compact form and allow you 
to calculate the deflection of an arbitrary point on the outer (cantilever) contour of the truss. The lower 
estimate of the first oscillation frequency of nodes under the assumption of vertical displacements of 
points has a relative error compared to the numerical solution of the problem of the spectrum of all 
frequencies non-monotonically dependent on the number of panels. The absolute error decreases as 
the number of panels increases. Solutions of systems of equilibrium equations for nodes and all 
transformations are made in the system of symbolic mathematics Maple. Linear asymptotics of 
solutions is found for some forces. 

1 Introduction 

Metal truss structures are most often used in the construction of roof systems for production 
workshops, public buildings, and commercial enterprises. Such structures are durable, easy to use, 
their installation is relatively simple. The method for calculating the strength and stability of roof trusses 
is well known and well developed in specialized packages using numerical algorithms. Most often, the 
finite element method in various versions is used in calculations [1]–[6]. Analytical solutions are used 
much less frequently in calculations. Known analytical solutions are applicable either for a narrow class 
of structures [7]–[9], or the analytical solution is not reduced to a simple calculation formula and has 
only the form of an algorithm for further calculation in symbolic mathematics systems [10]–[13]. The 
value of solutions in the form of formula is greater, the more parameters of the object under study and 
the material of which it consists are included in the solution. In regular trusses consisting of some 
periodic structures, the regularity parameter (the order of the system) is the number of such structures. 
A group of rods included in one panel can be such a structure. The problem of the existence and 
calculation of statically determinate regular systems (planar and spatial) was first taken up by N. 
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Hutchinson and R. Fleck [14]–[16]. The handbooks [17], [18] contain schemes of planar statically 
determinate regular trusses and formulas for calculating their deflection under the action of distributed 
and concentrated loads. To derive the formulas, the induction method was used, which consists in 
generalizing a series of individual truss calculations with a successively increasing number of panels to 
the case of an arbitrary number of panels. The operators of the Maple symbolic mathematics system 
were used. In addition, separate analytical solutions of the deflection problems for planar trusses [19], 
[20], arches [21]–[23], and frames [24] are also known, also obtained by induction in the Maple system. 
The same algorithm is also applicable for calculating deformations of three-dimensional trusses [25] 
and for deriving a formula for estimating the lower limit of the first frequency of natural oscillations of 
statically determinate trusses [26], [27]. 

In this paper, a new scheme is proposed for a regular statically determinate construction of 
spatial coverage in the form of a closed cantilever gallery. The task is to derive analytical dependences 
of truss deformations, forces in critical rods, and oscillation frequency on the number of panels. The 
results of the study can be used to evaluate numerical solutions, especially for large-scale structures, in 
the numerical calculations of which the accumulation of rounding errors is inevitable. 

2 Materials and Methods 

2.1 Design 

The design of the proposed cover consists of a closed contour of individual pyramids with a 
height h  and a size of a a  in plan (Fig. 1). The tops of the rod pyramids are connected by the upper 
square contour. The lower faces of the pyramids form two contours. The internal closed lower contour 
of the structure is fixed to vertical supports and four additional mutually perpendicular horizontal ties at 
four corners (Fig. 3). The outer open lower contour of the truss forms the cantilevered part of the 
structure. The vertical support rods are of length b . The whole structure consists of 36 48N n   rods, 
including the rods modeling the supports. The order of regularity of the construction is equal to the 
number n   of pyramids on each side of the gallery. 

 

Fig. 1. The cover structure under uniform load n=5 

2.2 Force Calculation Algorithm 

Consider a uniform nodal vertical load applied to all truss nodes (Fig.1). The forces will be 
calculated in a program written in the Maple [28] language. To enter information about the structure of 
the structure into the program, the nodes are numbered (Fig. 2) and their coordinates are entered. In 
addition to the support nodes fixed on a fixed base, the truss contains 12 16n   nodes. The upper 
contour consists of 4( 1)n  rods, the rest in the lower contours. The coordinates, for example, of the 
lower external non-closed contour are: 
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The coordinates of the nodes of the upper closed contour have the form:  
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Fig. 2. Numbering of nodes and horizontal links n=5 

 The order of connection of the rods is set by special lists 1 2[ , ]i i   of numbers 1i , 2i hinges at 

the ends of the rods 1,..,N  . The bars of the lower outer contour has, for example, the following 

node numbers at the ends: ( 2) [ ( 1), ( 1) 1], 1,.., 1, 0,..,3.i j n i j n i j n i n j           . The numbers 

of the remaining bars of the contours are set similarly. The choice of the initial and final end of the rod 
(the first or second component of the ordered list 1 2[ , ]i i  ) is arbitrary and is not related to the sign 

of the force in this rod. 
The system of equilibrium equations of nodes in projections on the coordinate axes is considered 

in matrix form GS B , where G  is the matrix of projection equation coefficients, S  is the vector of all 
forces and reactions of the supports, B  is the load vector. The projections of the conditional vectors of 
the rods have the form 

,1 ,2 ,1 ,2 ,1 ,2, , ,, ,
i i i i i ix i y i z il x x l y y l z z           . The matrix G  of the system of 

equilibrium equations is composed of the direction cosines of the forces. In this case, the force on one 
end of the rod and the other is applied in opposite directions, therefore, the direction cosines have 
different signs: 
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 where 2 2 2
, , ,i x i y i z il l l l    —  rod length. The solution of the system of equations is obtained in 

symbolic or numerical form. 

3 Results and Discussion 

3.1 Forces in rods 

Consider the case of loading a truss with a uniform vertical nodal load. The load vector on the 
right side of the equilibrium equation system has the form 3 , 1,..,12 16.iB P i n     Figure 3 shows 

the distribution of forces in the structure bars. The force values are related to the load on node P and 
rounded to two significant figures. 

 

Fig. 3. Distribution of forces in the truss rods, n=5, a=3 m, h= 1 m 

Tensioned rods are highlighted in red, compressed rods are highlighted in blue. The thickness of 
the segments of the rods is conditionally proportional to the modules of the corresponding forces. Thin 
segments of black color are not tense. The reactions of the angular vertical supports are equal 
(3 4)n P , the remaining vertical posts and angular horizontal connections under such a load and for 
any number of panels n  have zero forces. The most loaded inclined corner rods. The structure hangs 
on four compressed rods connected by the upper stretched contour of the rods. The lower inner 
contour is also compressed. In Figure 2, some rods are marked with letters, for which formulas will be 
found for the dependence of forces on the number of panels. Calculating forces  in trusses with 

 4,5,6,...n   the following sequences of expressions are obtained: 

1

2

1

5 / (2 ), 13 / (4 ), 4 / , 19 / (4 ), 11 / (2 ),...,
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D Pc h Pc h Pc h Pc h Pc h

O Pa h Pa h Pa h Pa h Pa h

O Pa h Pa h Pa h Pa h Pa h

U Pa h Pa h Pa h Pa h Pa

    
    
   


2

1

(2 ),...,

3 / (2 ), 3 / ,9 / (2 ),6 / ,15 / (2 ),...,

3 / , 15 / (4 ), 9 / (2 ), 21 / (4 ), 6 / ,... .

h

U Pa h Pa h Pa h Pa h Pa h

T Pa h Pa h Pa h Pa h Pa h


     

 (1) 

where 2 22 4c a h  . The force 2 3T P   in the inner lower contour does not depend on the number 

of panels for n >3, but for n =3 it is slightly different: 2 9 / 4.T P  The common terms of sequences (1) 
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can be found using the special operators rgf_findrecur and rsolve of the Maple system or, somewhat 
more simply, in the computer mathematics system Wolfram Mathematics operator 
FindSequenceFunction. This operator requires a smaller sequence length to obtain the general term 
formula and does not require, like the rsolve operator, to find a recursive equation that the terms of the 
sequence satisfy. We get the following linear dependencies on the number of panels: 

1

2 1

2 1

(3 2) / (4 ), (3 2) / (4 ),

(16 3 ) / (4 ), 3 ( 2) / (4 ),

3 ( 3) / (2 ), 3 / (4 ).

D Pc n h O Pa n h

O Pa n h U Pa n h

U Pa n h T Pan h

     
   
  

 

These formulas can be used to calculate the critical loads on a structure as a function of the 
number of panels in terms of compressive strength and tensile strength of bars. 

3.2 Deflection 

When calculating the deflection at individual points of the truss, we will use the Maxwell-Mohr 
formula, assuming that all the rods are linearly elastic. 

 ( ) (1)

1

/
N

PS S l EF  


   (2) 

 The sum is compiled for all elastic bars of the structure, including bars that the model supports. 
The standard designations are used in the formula: EF  is the rigidity of the rod, ( )PS  is the force in the 

rod with a number  from the action of an external load, (1)S  is the force in the same rod from the 

action of a unit vertical force applied to the node whose deflection is measured, l  is the length of the 

rod. 
As in the derivation of formulas for the dependence of forces in rods on the number of panels, we 

use the induction method. Let us consider the displacements of points on consoles along with one of 
the side edges of the structure. In the general case, these are nodes with numbers ( )1,.., 1n  along the 
lower outer contour (Fig. 2). 

The derivation of formulas is carried out in two stages. First, we find the dependence of the 
deflection 1( )n  at point 1 on the number of panels n . Sequential calculation of the deflection 

according to the formula (2) with b h  gives the formulas: 

3 3 3 2
1

3 3 3 2
1

3 3 3 2
1

3 3 3 2
1

3 3 3 2
1

(3) (1984 19 160 ) / (32 ),

(4) (1088 7 64 ) / (8 ),

(5) (6912 37 352 ) / (32 ),

(6) (4544 23 224 ) / (16 ),

(7) (10304 55 544 ) / (32 ),...

P a c h h EF

P a c h h EF
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   

   

   

   

   

 

 Generalizing these formulas by methods of the Maple system to an arbitrary number n : 
3 3 3 2

1 2 3( ) ( ) / ( ),k n P C a C c C h h EF     (3) 

where for 1k   the coefficients have the form: 

3 2
1 2 33 39 88 56, (9 8) / 32, 3 4.C n n n C n C n          

Similarly, we obtain dependencies for the deflections of other points 2 3 4( ), ( ), ( ),...n n n    on the 

lateral truss edge. In this case, the number of panels and the point number k must satisfy the inequality 
1n k  , so that the point understudy does not go beyond the edge of length ( 1)n a . We have the 

following expressions for the coefficients of formula (3): 
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3 2
1 2

3 2
1 2

3 2
1 2

3 2
1 2

2 : 3 15 40 4, (21 44) / 32,

3 : 9 69 132 136, (33 104) / 32,

4 : 15 123 116 836, (45 188) / 32,

5 : 21 177 80 2600, (57 296) / 32,...

k C n n n C n

k C n n n C n
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One coefficient, starting from k = 2, does not depend on the number of the point k at which the 
deflection is measured: 3 8 6C n  . Generalizing these expressions for k, we obtain the final 

expressions for the coefficients in the deflection formula (3): 

3 2 3 2 4 2
1

2
2

3 3

(3(2 3) 3(18 31) 2 (6 27 25 90) 2(3 25 50)) /16,

(12 12 3 4) / 32,

6 8, 1, 3 4, 1.

C k n k n n k k k k k

C k kn n

C n k C n k

          

    
     

 

Let's introduce the value of the dimensionless deflection ' , referred to the length of the lateral 
side of the truss ( 1)L n a   and the total load 0 4(3 4)P n P  : 0' ( ) / ( )kEF n P L   . The found 

dependences of deflections at various lateral points on the console have a limiting value on the 
horizontal asymptote: lim ' (7 4 ) / (16 ).

n
k h L


    

3.3 The natural frequency 

The frequency of natural oscillations is one of the main dynamic characteristics of the structure. 
Most often, calculations require the first (lowest) frequency, the lower limit of which can be obtained for 
regular structures in analytical form depending on the number of panels [29]. 

To calculate the natural vibration frequencies of the structure under consideration, we will take a 
simplified but widely used truss model, placing the masses evenly over all nodes. We will assume only 
the vertical motions of nodes. Thus, the system has 12 16K n   degrees of freedom. In symbolic 
form, for such a system, one can obtain a lower bound for the first frequency [29]. The Dunkerley 
formula [30] for the lower frequency limit has the form: 

2 2

1

.
K

D p
p

 



    (4) 

where p  
are the partial frequencies. The equation of vertical oscillations of the mass m  located in a 

separate node has the form: 
0,p p pz Dm z 

 
p=1,...,K ,  (5) 

Here  pD — stiffness, the reciprocal of compliance 1/p pD  . Compliance (vertical 

displacement) can be calculated using the Maxwell-Mohr formula: 

 2( )

1

1/ / ( ).
N

p
p p j j

j

D S l EF


    (6) 

where ( )p
jS is the force in the rod with number j from the action of a vertical unit force applied to the 

node where the mass is located. The stiffness factor and the partial frequency depend on the location 
where the mass is located. In the case of harmonic oscillations sin( )p pz U t   , from (5) we obtain 

the partial frequency / .p pD m   Substituting this expression into (4): 

2

1

( ).
K

D p
p

m m n



      (7) 

Calculations of the frequencies of trusses with a different number of panels show that the 
coefficient in (7) has the form: 

   3 3 2 2
1 2 3 ( 1)( 2)( ) /n C a C c C b EFh n nh      (8) 

The calculation of trusses with a different number of panels gives the following values: 
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3 3 3 2

3 3 3 2

3 3 3 2

3 3 3 2

3 3 3 2

(3) (136 33 456 ) / (8 ),

(4) (1352 205 2158 ) / (36 ),

(5) (11710 1215 11016 ) / (144 ),

(6) (6718 484 3829 ) / (40 ),

(7) (117136 5987 41720 ) / (360 ),...

a c h EFh

a c h EFh

a c h EFh

a c h EFh

a c h EFh

   

   

   

   

   

 

Finding the common members of the sequences of coefficients at 3a , 3c , and 3h , we obtain the 
dependences of the coefficients in (8) on the number of panels: 

6 5 4 3 2
1

4 3 2
2

3 2
3

(8 88 473 1300 1861 1318 360) / 24,

(5 25 62 73 30) /12,

2(4 3)(8 48 104 77) / (3( 2)).

C n n n n n n

C n n n n

C n n n n n

      

    

     

 (9) 

Thus, formula (7) with coefficients (9) gives an analytical expression for the dependence of the 
estimate of the first natural oscillation frequency of the truss on its dimensions and the number of 
panels. The degree of error of such an estimate can be estimated by comparing it with the first 
frequency of the entire spectrum of natural frequencies of the structure obtained numerically. This 
solution reduces to an eigenvalue problem. The system of differential equations of motion of the 
masses of a structure with K  number of degrees of freedom is written in matrix form: 

0,K Km  I Z D Z  (10) 

where KD  is the stiffness matrix, Z  is the vector of all vertical mass displacements in the truss nodes, 

Z  is the acceleration vector, KI  is the identity matrix. Multiplying (10) from the left by the matrix KB  

inverse to KD , we obtain the equation: 

0.K Km  B Z I Z  (11) 

For harmonic oscillations with the frequency   we have a connection 2 Z Z . It follows from 

(11) that ,K  B Z Z    where  21 / ( )m    are the eigenvalues of the matrix KB . The elements of this 

matrix are calculated using the Maxwell-Mohr formula: 

( ) ( )
,

1

/ ( ).
N

i j
i jb S S l EF  




 

Matrix eigenvalues can be determined numerically in the Maple system using the Eigenvalues 
operator with the linear algebra package LinearAlgebra connected. 

Consider a steel truss with masses 150kgm   in nodes. Let's take 42.0 10 kNEF    the rigidity 

of the rods, the dimensions of the panels  3.0m, 1.0m,а h   the height of the racks 3.0m.b   Figure 
4 shows the dependences of the first frequency on the number of panels, obtained numerically and 
analytically. 
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Fig. 4. Comparison of the first frequency 1  and its lower analytical estimate D  

With an increase in the number of panels, the curves converge, but analysis of the relative error  

1 1( ) /D       (Fig. 5) shows that this value has a minimum. 

 

Fig. 5. The error of the analytical solution for natural frequency depends on the number of panels 

3.4 Discussion 

In the process of choosing a closed-loop spatial truss scheme, various options were considered. 
Statically indeterminate circuits were not seen as unrealistically difficult for analytical methods. In many 
cases, when designing a suitable circuit, it was necessary to add various support rods, asymmetrically 
located on the sides of the structure. Such schemes, although sometimes quite simple, had to be 
abandoned. The goal was a scheme that had not only static determinate but also perfect symmetry. In 
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addition, the number of rods of different lengths number should have been minimal. Such a scheme 
has been created. As an unexpected positive feature, the design also received a cantilevered contour 
on all four sides. When developing the scheme, the complexity of analytical calculations was not 
discussed. Despite this, the obtained scheme, as it turned out, has fairly simple analytical solutions for 
both the deflections and the lower estimate of the first natural frequency. When deriving formulas for 
the deflection, the method of double induction, which is quite time-consuming in terms of calculation, 
was used. One induction parameter is the point number on the console, the second is the number of 
panels. The use of Wolfram Mathematica system operators for finding common terms of sequences of 
coefficients of the desired formulas turned out to be a significant help. Analytical solutions are not only 
compact, convenient for calculations, and can be applied without loss of computational accuracy for 
systems with a very large number of rods, but also give asymptotic estimates. For deflections, the 
asymptotics for the number of panels turned out to be linear both for the number of panels and for the 
number of the point on the console where the deflection is measured. 

The proposed scheme and the resulting calculation formulas can be considered as some basis 
for more complex, in particular, statically indeterminate structures or structures that have an overlap of 
the internal space formed by the gallery. Without much difficulty, the solution for deflection and vibration 
frequency can be generalized to rods of various stiffnesses. 

4 Conclusion 

A new scheme of the asymmetrical statically determinate spatial structure of the cover is 
proposed and analytical dependences of its stress-strain state and oscillation frequency on the number 
of panels are obtained. The calculated formulas found are quite universal and can be applied to a wide 
class of such structures. The algorithm used in the derivation allows simple recalculation of the problem 
for other types of loads. The dependence of the lowest oscillation frequency on the structure order 
(number of panels) is obtained numerically. The analytical estimate gives little accuracy compared to 
similar estimates of the first natural frequency for planar trusses. The main result of the work is the 
design of the structure and the analytical dependence of some characteristics of its stress-strain state 
on the number of panels. Such solutions make it possible to analyze and select the most optimal 
parameters of the structure being designed without using a numerical solution. One of the advantages 
of the analytical solution is the independence of its accuracy from the complexity of the design. In 
three-dimensional problems requiring volumetric calculations, this advantage is more pronounced than 
for planar systems. 

5 Acknowledgements 

This work was financially supported by the Russian Science Foundation 22-21-00473. 

References 
1.  Kumar, R., Sahoo, D.R. Seismic fragility of steel special truss moment frames with multiple 

ductile vierendeel panels. Soil Dynamics and Earthquake Engineering. 2021. 143. Pp. 106603. 
DOI:10.1016/j.soildyn.2021.106603. 

2.  Chen, Z., Chen, F., Zhou, L. Slow-fast dynamics in the truss core sandwich plate under 
excitations with high and low frequencies. Applied Mathematical Modelling. 2020. 88. Pp. 382–
395. DOI:10.1016/j.apm.2020.06.055. 

3.  Liu, M., Cao, D., Zhu, D. Coupled vibration analysis for equivalent dynamic model of the space 
antenna truss. Applied Mathematical Modelling. 2021. 89. Pp. 285–298. 
DOI:10.1016/j.apm.2020.07.013. 

4.  Santana, M.V.B., Gonçalves, P.B., Silveira, R.A.M. Closed-form solutions for the symmetric 
nonlinear free oscillations of pyramidal trusses. Physica D: Nonlinear Phenomena. 2021. 417. 
Pp. 132814. DOI:10.1016/j.physd.2020.132814. 

5.  Abdikarimov, R., Vatin, N., Normuminov, B., Khodzhaev, D. Vibrations of a viscoelastic isotropic 
plate under periodic load without considering the tangential forces of inertia. Journal of Physics: 
Conference Series. 2021. 1928(1). DOI:10.1088/1742-6596/1928/1/012037. 

6.  Han, Q.H., Xu, Y., Lu, Y., Xu, J., Zhao, Q.H. Failure mechanism of steel arch trusses: Shaking 
table testing and FEM analysis. Engineering Structures. 2015. 82. Pp. 186–198. 



This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M.;  
Deformations And Spatial Structure Vibrations Frequency of The Rectangular Contour Type Cover: Analytical Solutions;  
2021; Construction of Unique Buildings and Structures;  98 Article No 9805. doi: 10.4123/CUBS.98.5 

DOI:10.1016/j.engstruct.2014.10.013. URL: http://dx.doi.org/10.1016/j.engstruct.2014.10.013. 
7.  Ovsyannikova, V.M. Dependence of deformations of a trapezous truss beam on the number of 

panels. Structural Mechanics and Structures. 2020. 26(3). Pp. 13–20. URL: 
https://www.elibrary.ru/item.asp?id=44110286 (date of application: 11.03.2021). 

8.  Ovsyannikova, V.M. Dependence of the deflection of a planar external statically undeterminable 
truss on the number of panels. Structural Mechanics and Structures. 2020. 27(4). Pp. 16–25. 
URL: https://www.elibrary.ru/download/elibrary_44374443_62905709.pdf. 

9.  Ilyushin, A.S. The formula for calculating the deflection of a compound externally statically 
indeterminate frame. Structural mechanics and structures. 2019. 22(3). Pp. 29–38. URL: 
https://elibrary.ru/item.asp?id=41201106 (date of application: 27.02.2021). 

10.  Rybakov, L. S., Mishustin, I. V. Small elastic vibrations of planar trusses of orthogonal structure. 
Mechanics of composite materials and structures. 2003. 9(1). Pp. 42–58. URL: 
https://elibrary.ru/item.asp?id=11724233 (date of application: 5.07.2021). 

11.  Goloskokov, D.P., Matrosov, A. V. Approximate analytical approach in analyzing an orthotropic 
rectangular plate with a crack. Materials Physics and Mechanics. 2018. 36(1). Pp. 137–141. 
DOI:10.18720/MPM.3612018_15. 

12.  Matrosov, A. V. Computational Peculiarities of the Method of Initial Functions. Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 
in Bioinformatics). 2019. 11619 LNCS. Pp. 37–51. DOI:10.1007/978-3-030-24289-3_4. 

13.  Galileev, S.M., Matrosov, A. V. Method of initial functions: Stable algorithms in the analysis of 
thick laminated composite structures. Composite Structures. 1997. 39(3–4). Pp. 255–262. 
DOI:10.1016/S0263-8223(97)00108-6. 

14.  Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically 
determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 
2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208. 

15.  Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the 
Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008. 

16.  Zotos, K. Performance comparison of Maple and Mathematica. Applied Mathematics and 
Computation. 2007. 188(2). Pp. 1426–1429. DOI:10.1016/j.amc.2006.11.008. 

17.  Kirsanov, M. Planar Trusses: Schemes and Formulas. Cambridge Scholars Publishing Lady 
Stephenson Library. Newcastle upon Tyne, GB, 2019. 

18.  Kirsanov, M. Trussed Frames and Arches: Schemes and Formulas. Cambridge Scholars 
Publishing Lady Stephenson Library. Newcastle upon Tyne, GB, 2020. 

19.  Voropay, R. A., Domanov, E. V. The dependence of the deflection of a planar beam truss with a 
complex lattice on the number of panels in the system Maple. Postulat. 2019. (1). 

20.  Dai, Q. Analytical Dependence of Planar Truss Deformations on the Number of Panels. 
AlfaBuild. 2021. 17. Pp. 1701. DOI:10.34910/ALF.17.1. 

21.  Voropay, R., Domanov, E. Analytical solution of the problem of shifting a movable support of a 
truss of arch type in the Maple system. Postulat. 2019. 1. URL: http://vuz.exponenta.ru/1/vd.pdf 
(date of application: 27.02.2021). 

22.  Kazmiruk, I.Y. On the arch truss deformation under the action of lateral load. Science Almanac. 
2016. 17(3–3). Pp. 75–78. DOI:10.17117/na.2016.03.03.075. URL: 
http://ucom.ru/doc/na.2016.03.03.075.pdf (date of application: 9.05.2021). 

23.  Rakhmatulina, A.R., Smirnova, A.A. The dependence of the deflection of the arched truss loaded 
on the upper belt, on the number of panels. Science Almanace. 2017. 28(2–3). Pp. 268–271. 
DOI:10.17117/na.2017.02.03.268. URL: http://ucom.ru/doc/na.2017.02.03.268.pdf (date of 
application: 9.05.2021). 

24.  Belyankin, N.A.; Boyko, A.Y. Formula for deflection of a girder with an arbitrary number of panels 
under the uniform load. Structural Mechanics and Structures. 2019. 1(20). Pp. 21–29. URL: 
https://www.elibrary.ru/download/elibrary_37105069_21945931.pdf. 

25.  Kirsanov, M.N. Spectrum of own frequencies of a spatial surfacing girder. Russian Journal of 
Building Construction and Architecture. 2021. (3(51)). Pp. 104–113. 
DOI:10.36622/VSTU.2021.51.3.009. 

26.  Vorobev, O.V. Bilateral Analytical Estimation of the First Frequency of a Plane Truss. 
Construction of Unique Buildings and Structures. 2020. 92(7). Pp. 9204–9204. 
DOI:10.18720/CUBS.92.4. URL: https://unistroy.spbstu.ru/article/2020.92.4 (date of application: 
17.04.2021). 



This publication is licensed under a CC BY-NC 4.0 
 

 

Kirsanov, M.;  
Deformations And Spatial Structure Vibrations Frequency of The Rectangular Contour Type Cover: Analytical Solutions;  
2021; Construction of Unique Buildings and Structures;  98 Article No 9805. doi: 10.4123/CUBS.98.5 

27.  Petrenko, V.F. The natural frequency of a two-span truss. AlfaBuild. 2021. (20). Pp. 2001. 
DOI:10.34910/ALF.20.1. 

28.  Buka-Vaivade, K., Kirsanov, M.N., Serdjuks, D.O. Calculation of deformations of a cantilever-
frame planar truss model with an arbitrary number of panels. Vestnik MGSU. 2020. (4). Pp. 510–
517. DOI:10.22227/1997-0935.2020.4.510-517. 

29.  Vorobyev, O. About methods of obtaining analytical solution for eigenfrequencies problem of 
trusses. Structural mechanics and structures. 2020. 1(24). Pp. 25–38. URL: 
http://vuz.exponenta.ru/PDF/NAUKA/elibrary_42591122_21834695.pdf. 

30.  Levy, C. An iterative technique based on the Dunkerley method for determining the natural 
frequencies of vibrating systems. Journal of Sound and Vibration. 1991. 150(1). Pp. 111–118. 
DOI:10.1016/0022-460X(91)90405-9. 

 


