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Abstract: 

The object of research. A new scheme of a statically determinate spatial truss is considered. 
The design has a hexagonal dome resting on two belts. The belts are supported by vertical racks. Two 
corner supports have spherical and cylindrical hinges. The outer support contra consists of 6n  
horizontal rods, the inner one consists of 6(n-1) rods. The contours are connected by skews. Formulas 
are derived for the deflection of the vertex and the angular hinge depending on n. The upper and lower 
analytical estimates of the first frequency of natural oscillations of the structure are found. Method. 
Calculation of the forces in the rods is carried out by cutting out the nodes from the solution of the 
system of equilibrium equations for all nodes in the projection on the coordinate axes. To derive 
formulas for the dependence of breakdowns, forces, and the frequency of free oscillations, an inductive 
generalization of the sequence of solutions for structures with a different number of panels is used. The 
structural stiffness matrix and deflection are calculated using the Maxwell - Mohr formula in analytical 
form. To find estimates of the lowest frequency of vibrations of nodes endowed with masses, the 
Dunkerley and Rayleigh methods are used. Results. The vertical load distributed over the nodes and 
the concentrated load applied to the top are considered. Formulas for the forces in the characteristic 
bars of the structure are derived. A picture of the distribution of forces throughout the structure is 
presented. The resulting formulas for the deflection and frequency estimates have a compact form. The 
upper estimate of the first oscillation frequency of nodes under the assumption of vertical 
displacements of points has fairly high accuracy. The analytical solution is compared with the lowest 
oscillation frequency obtained numerically. All analytical transformations are performed in the Maple 
symbolic mathematics system. Some asymptotics of solutions is found. 

1 Introduction 

Spatial truss structures are traditionally used in large-span roof structures of public buildings, 
trade, and transport enterprises. It is not always possible to represent a spatial structure as a certain 
sum of planar trusses, for which both numerical [1]–[6] and analytical methods of calculation are well 
developed. One of these structures is discussed in this article. Among planar and spatial trusses, a 
class of regular trusses can be distinguished separately. For such trusses, inductive calculation 
methods are possible to obtain a solution that is valid for an arbitrary number of structure periodicity 
elements. 

Hutchinson R.G. and Fleck N.A. [7], [8] were among the first to deal with the problem of the 
existence and calculation of statically determinate regular systems. In the monographs A. Kaveh [9], 
[10], methods of graph theory and group theory are used to solve optimization problems for regular and 
symmetric large-scale constructions. It is shown that these methods can significantly reduce the 
calculations of such systems. 

Analytical methods and algorithms using the superposition method and representation in the form 
of trigonometric series, implemented in the Maple system, are proposed in [11]–[13]. 
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The handbooks [14], [15] contain analytical solutions for the deflection of various schemes of 
planar statically determinate regular trusses under various loads. To derive the formulas, the operators 
of the Maple symbolic mathematics system and the induction method were used, which consists in 
generalizing a series of separate calculations of trusses with a successively increasing number of 
panels to the case of an arbitrary number of panels. 

Separate analytical solutions obtained by induction are also known for deflection problems for 
planar trusses [16], arches [17], [18], and frames [19]–[21]. A similar algorithm was used in calculations 
of deformations of three-dimensional trusses [22] and in deriving a formula for estimating the first 
frequency of natural oscillations of statically determinate trusses [23]–[25]. 

In this paper, a new scheme for a spatial regular statically determinate structure of a dome cover 
was proposed. The task was set to derive analytical dependences of truss deformations, forces in 
critical rods, and oscillation frequency on the number of panels. The formulas obtained can be used to 
evaluate numerical solutions, especially for large-scale structures, in the numerical calculations in 
which the accumulation of rounding errors, leading to loss of calculation accuracy, is inevitable. 

2 Materials and methods 

2.1  Design of the truss 

The coating structure consists of two closed rod contours. A hexagonal rod pyramid rests on the 

outer contour (Fig. 1). Contours connect braces of length 
2 2c a h= +  . The outer contour contains 

6n  rods of length a, the inner one contains ( )6 1n−  rods. The length of the edge of the pyramidal 

dome is equal to nc . The outer contour of the structure is fixed on vertical supports with a height h . 

There are three additional horizontal bonds at corners A and B, so that corner A is a spherical hinge 

and corner B is cylindrical. The whole structure consists of 36 15sn n= −  rods, including posts and rods 

modeling supports. 

   

Fig. 1- Coating structure under uniform load n=4 

2.2 Force Calculation Algorithm 

The design is statically determined, the number of internal truss nodes is three times less than 
the number of rods: 12 5K n= − . The truss is loaded with vertical forces uniformly distributed over the 

nodes. The forces in a program [26] written in the Maple language will be calculated. The program 
includes a method for cutting nodes. To enter information about the structure of the structure into the 
program, the nodes are numbered (Fig. 2) and their coordinates are entered. The coordinates of the 
outer contour have the form: 

cos ( 1)cos ,

sin ( 1)sin ,

, 1,.., , 0,..,5,

i jn

i jn

i jn

x L a i

y L a i

z h i n j

+

+

+

= − − 

= + − 

= = =
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where , / 3, / 3 .L na j= =  =  −  
The coordinates of the hinges of the inner (lower) contour: 

( 1) 6

( 1) 6

( 1) 6

( )cos ( 1)cos ,

( )sin ( 1)sin ,

0, 1,.., 1, 0,..,5.

i j n n

i j n n

i j n n

x L a a i

y L a a i

z i n j

+ − +

+ − +

+ − +

= − − − 

= − + − 

= = − =

 

The top of the dome C has the following coordinates: 

12 5 12 5 12 50, ( 1) .n n nx y z n h− − −= = = +   

The coordinates of the hinges to which the support posts of the outer contour are attached from 
below: 

12 5 12 5 12 5, , , 1,..,6 .i n i i n i i nx x y y z h i n+ − + − + −= = = − =

 
The coordinates of the lower hinges of the racks of the internal contour: 

(5 ) 2 (5 ) 2, , ,

18 ( 1)( 2) 5, 1,.., 2, 1,..,6.

t i j n j t i j n j tx x y x z h

t i n j n i n j

+ + − + + + − += = = −

= + + − − − = − =
 

To determine the structure of the lattice of rods, oriented lists of vertices of the ends of the rods 

are introduced , 1,..,i si n = . Bars of the outer contour, for example, are specified by lists: 

[ , 1],i i i = +  1,..,6 1,i n= −  6 [6 ,1].n n =  Lists of end numbers of bars of the inner contour look like 

this: 

6 12 6[ 6 , 6 1], 1,..,6 7, [12 6,6 1].i n ni n i n i n n n+ − = + + + = −  = − +  

 

Fig. 2 - Truss node numbering, n=3 

The matrix G of coefficients of the system of linear equations of equilibrium of nodes in the 

projection on the coordinate axes are calculated from the coordinate values and lists of the ends of the 
rods: 

,1 ,2, ( ) / , , , , 1,..., 3,
i iv i i sg v v l v x y z i n = − = = +

 

where 
,1 ,2

2

, ,

( )
i ii

v x y z

l v v 

=

= −  — the length of the rod with number i. The number of bars also includes 

the supporting corner bars at vertices A and B. The coefficient matrix is filled in by rows. Every three 
lines correspond to the direction cosines of the forces with the x, y, z axes, respectively: 

,1 ,23 2 , , 3 2 , ,, , 1,2,3, 1,.., .
i ij i j i j i j i sG g G g j i n − +  − += = − = =  

It takes into account the fact that the force vector applied to the node at one end of the rod is 
opposite to the force vector applied to the node at the other end of the rod. 

The system of equilibrium equations for nodes has a matrix form ,=GS T  where S  is the column 

vector of length sn  consists of the values of unknown forces in the rods, including the reactions of the 
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supports. The load vector T  has the same length. The projections on the x-axis of the loads applied to 

node i are written in the elements of this vector 3 2iT − , on the y-axis – in the elements 3 1iT − . The values 

of vertical external forces are contained in the elements 3 , 1,..., .iT i K=
 
The solution of the matrix 

equation in symbolic form in the Maple symbolic mathematics system is performed by the inverse 

matrix method 
1 .−=S G T  

3 Results 

3.1 Forces in rods 

The picture of the force distribution over the structure bars for the case of a uniform vertical 

external load 6m, 1ma h= =  is shown in Figure 3. The force values are related to the load on node P 

and rounded into two significant figures. 

 

Fig. 3 - Distribution of forces in the truss rods, n=3 

Compressed rods are highlighted in blue, stretched rods are highlighted in red. The thickness of 
the segments of the rods is conditionally proportional to the force modules. The braces marked with 
thin black lines are not stressed. The inner contour under such a load is stretched, the outer one is 
compressed. 

Based on the results of force calculation, formulas for forces in characteristic bars can be derived. 
A rare feature for regular systems was noticed: the forces in the corresponding rods do not depend on 
the number of panels. For any order of the truss, the forces in the corner braces are always the same: 

I /S Pс h= . Compressive forces in the six rods of the dome: II / (6 )S Pc h= , the forces of the rods of 

the outer contour III 5 / (6 )S Pa h= − , the forces in the inner contour IV /S Pa h= . The forces in all 

support posts on the outer contour, except for the corner ones, are equal P− . The forces of the racks 

on the inner contour are also equal P− . The vertical reactions of the corner supports do not depend on 

the dimensions of the truss and are calculated by the formula 13 / 6.conerR P= The resulting solution is 

easily verified. The sum of projections on the z-axis of all reactions of supports of external forces 
applied to the  12 5K n= −  nodes of the structure is equal to zero: 

6( 1) 6( 2) 6 (12 5) 0.conern P n P R n P−  + −  + − −  =  

3.2 Deflection 

When calculating the deflection at individual points of the truss and in the future, when calculating 
the natural oscillation frequency, we will use the Maxwell-Mohr formula, assuming that all the rods are 
linearly elastic and work only in compression and tension: 

( )( ) (1)

1

/
sn

PS S l EF  

=

 =  (1) 
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The sum is made for all deformable bars of the structure, including support bars. Standard 
designations are used here: E is the modulus of elasticity of the material, F is the cross-sectional area 

of the rod, 
( )PS  is the force from the action of an external load in the rod with the number  , 

(1)S  is the 

force in the same rod from the action of a unit vertical force applied to the vertex C, l  is the long rod. 

Let's find the deflection for several trusses with a successively increasing number of panels. 
3 3 3 2

2

3 3 3 2

3

3 3 3 2

4

3 3 3 2

5

3 3 3 2

6

(5 13 ) / (3 ),

(15 ) / (6 ),

(10 13 ) / (3 ),

(25 ) / (6 ),

(15 13 ) / (3 ),...

3 26

2

5 26

3

P a c h h EF

P a c h h EF

P a c h h EF

P a c h h EF

P a c h h EF

 − −

− −

− −

= −

 = −

 = −

 = − − −

− = − −

 

  
Generalizing these formulas by methods of the Maple system to an arbitrary number n , it is 

obtained: 
3 3 3 2( ) (5 ) / (6 ).26n P nC na c h h EF = − − −  (2) 

Usually, in similar problems, [16-21] the procedure for obtaining a general solution for several 
private ones requires the involvement of special operators of computer mathematics. In this case, the 
dependencies are very simple and linear in the number of panels.  
Similarly, we obtain a dependence of the same form for the deflection of the angular (not supported) 
node D: 

3 3 3 2( ) ((11 6) ) / (6 ).6 26n D P n a c h h EF+ + = − −  (3) 

The form of the solution turned out to be quite simple. Compared to polynomial dependences on 
the number of panels of degrees four or more in similar solutions for planar systems [16-21], linear 
solutions (2) and (3) are much simpler. 

Let us introduce the value of the dimensionless deflection 0' ( ) / ( )kEF n P L =  , referred to as 

the length of the side edge of the outer contour of the truss L na=  and the total load 0 (12 5)P n P= − . 

The found dependences of the deflections at various lateral points on the console have a limiting value 

on the horizontal asymptote:
 
lim '( ) 0, lim '( ) / (72 )
n n

C D h L
→ →

 =  = (Fig. 4). 

 

Fig. 4 - Relatie deflections at points C and D at 40mL an= =
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The curves of the dependences of deflections (2) and (3) on the height h at a certain value of the 

height intersect (Fig. 5). Equating (2) and (3) we obtain an equation whose solution can be found 
analytically: 

23 2* 4(8 3) ( 6) 1 ./
L

h n n
n

= − − −  

 

Fig. 5 - Relatie deflections at points C and D at 40m, 35L an n= = =
  

These curves also have asymptotes, the angle tangents of which can be found using Maple:

' '16 26
lim , lim .

(36 15) (72 30)

C D

h h

n

h L n h L n→ →

  +
= =

− −
 

3.3 Natural frequency 

Most dynamic calculations of structures include the calculation of the value of the first (lowest) 
frequency of natural oscillations. As a rule, the calculation of natural frequencies is performed 
numerically based on various variants of the finite element method [27]–[29]. Analytical methods are 
only possible for the upper and lower frequency estimates [24]. Approximate methods for obtaining 
such estimates are known [30], [31]. These methods are based on the calculation of partial 
frequencies, the values of which can in some cases be found analytically. For regular constructions, 
analytical estimates can be generalized to an arbitrary number of panels using the [25] induction 
method. 

The inertial properties of the structure under consideration by the same concentrated masses m 
in the nodes are modeled. Neglecting the horizontal displacements of the weights, only their vertical 

vibrations will be considered. The number of degrees of freedom of the truss weight system of order n 

is equal to the number of nodes 12 5K n= − .  

The differential equations for the movement of goods in matrix form were written: 

0,K K+ =M Z D Z  (4) 
where Z  – the vector of vertical displacements of masses 1,..., K, KM

 is the inertia matrix of size 

K K , KD  is the stiffness matrix, Z  is the acceleration vector. In the case of equal masses, the 

inertia matrix is proportional to the identity matrix K Km=M I . The elements of the matrix KB
 inverse 

to the stiffness matrix KD  can be found using the Maxwell-Mohr formula: 
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( ) ( )

,

1

/ ( ),
s

i j

j

n

ib S S l EF  

=

=  (5) 

where, by analogy with (1), the designation is introduced here: 
( )iS  is the force in the rod   from the 

action of a unit vertical force at node i. The problem is reduced to the problem of matrix eigenvalues 

KB . We multiply (4) by KB
 on the left, and taking into account  

2= −Z Z  the replacement 

corresponding to harmonic oscillations: 

0sin( )i iz u t=  +
 (6) 

Thus, we obtain the equation of the problem for the eigenvalues of the matrix ,K = B Z Z
 where 

21/ ( )m = 
 is the eigenvalue of the matrix KB ,   is the natural oscillation frequency. From here, the 

frequency of natural oscillations has the form 1/ ( )m=  . The eigenvalue problem is solved by the 

Eigenvalues operator of the Maple system. 

The elements of the matrix KB  depend on the forces 
( )iS  in the rods, which are found from the 

solution of the system of equations of the truss nodes in projections onto three coordinate axes. The 
same system also includes the reactions of the supports. 

Consider two approximate methods that give upper and lower bounds for the first frequency. 

3.3.1 The energy method. Top rating 

From the equality of the maximum values of the kinetic and potential energies: 

max maxT = 
 (7) 

follows the Rayleigh formula for the upper estimate of the first frequency. The kinetic energy of the 
system of all masses m located at the nodes of the structure has the form: 

2

1

/ 2.
K

i

i

T mv
=

=  

The vertical velocity of the mass i according to (6) has the form: 

0sin( )i i iv z u t= =   + . 

Assuming that at maximum kinetic energy 0max(sin( )) 1t + = , we get:

      
2 2

max

1

/ 2,
K

i

i

T m u
=

=    (8) 

                                                    

 
where the amplitude of the vertical displacement is calculated using the Maxwell-Mohr formula: 

( ) ( ) ( ) ( )

1 1

/ ( ) / ( )
s sn n

P i P i

i iu S S l EF P S S l EF Pu     

= =

= = =  . 

The previous designations are used: 
( )PS  - force in the rod 1,..., sn =  from the action of the load 

P, uniformly distributed over the nodes, 
( )iS

 — force in the same rod from a single (dimensionless) load 

applied to the mass with number i, 
( ) ( ) /P PS S P = . The form of vibrations of the system of loads with 

the first frequency is close to the form of deflection of the structure from a uniform load. Thus, (8) takes 
the form: 

2 2 2

max

1

/ 2,
K

i

i

T P mu
=

=    (9) 
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where 
( ) ( )

1

/ / ( )
sn

P i

i iu u P S S l EF  

=

= =  is the amplitude of displacements of the mass with a number i 

under the action of a distributed load, referred to as the value of P. 
Let us write the potential energy of deformation of elastic rods: 

( ) ( ) 2

max

1 1

/ 2 ( ) / (2 ).
s sn n

P PS l S l EF   

= =

 =  =   

Due to the linearity of the load problem, we have 
( ) ( )

1

N
P i

i

S P S 

=

=  . 

2 ( ) ( ) 2 ( ) ( ) 2

max

1 1 1 1

/ (2 ) / (2 ) / 2.
s sn nK K N

P i P i

i

i i i

P S S l EF P S S l EF P u     

= = =  =

 = = =     (10) 

 
From (7), (9), (10) follow the Rayleigh formula for the upper estimate of the first oscillation 

frequency of the truss: 

2 2

1 1

/ .
K K

R i i

i i

u mu
= =

 =   (11) 

Generalizing a series of solutions for displacement iu
 at various n, we find the dependence of the 

frequency on the construction order n. Consider separately the sums  
1

K

i

i

u
=


 
and 

2

1

K

i

i

u
=

 . 

The calculation of displacement for trusses with different numbers of panels shows that the 

solution for the sums 
1

K

i

i

u
=

  in the numerator (11) has the form: 

3 3 3 2

1

( ) / ( ),
K

i a c h

i

u C a C c C h h EF
=

= + +  

or in a more compact form: 

3 2

1 [ , , ]

/ ( ),
K

i

i a c h

u mg h EF

= =

=    (12) 

where the coefficients , ,a c hC C C  are obtained by induction, generalizing a series of solutions for 

different n: 

3 3 3 2

3 3 3 2

3 3 3 2

3 3 3 2

1

3 3 3 2

1

1

1

1

2, (134 50 205 ) / (6 ),

3, (219 51 313 ) / (6 ),

4, (304 52 421 ) / (6 ),

5, (389 53 529 ) / (6 ),

6, (474 54 637 ) / (6 ),

K

i

i

K

i

i

K

i

i

K

i

i

K

i

i

n a c h h

n a c h h

n a c h

u EF

u EF

u EF

u EFa

u E

h

n c h h

n h Fa c h

=

=

=

=

=

= = + +

= = + +

= = + +

= = + +

= = + +









 ...

 

As a result, we have coefficients:
               

 

(85 36), ( 48) / 6, (108 11) / 6.c haC n C n C n= − = + = −
 (13) 

The denominator (12) has a more complex form: 

2 3 3 4 2 2

1 , [ , , ]

/ ( ),
N

k

k a c h

mu mC h E F

=  =

=     (14) 

where:
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2

2

2

ch

(751 792 216) / 36,

( 216) / 36,

(270 1873) / 9,

(5 216) /18,

(793 468) / 9,

(13 468) / 9.

396

aa

cc

hh

ac

ah

C n n

C n

C n

C n n

C n

C n

= − +

= +

= +

= − +

= +

−

= −

 (15) 

Thus, the upper estimate of the first frequency of the truss, depending on the number of panels, 
can be obtained by the formula:

     

 
3

[ , , ]

3 3

, [ , , ]

a c h

R

a c h

EF C

h
m C



=



 =



 =
 



  (16) 

with coefficients (13), (15) depending only on the construction order n. 

3.3.2 Dunkerley score 

The lower estimate of the first oscillation frequency is obtained by the Dunkerley formula: 

2 2

1

K

D i

i

− −

=

 =   , (17) 

where i  is the oscillation frequency of one mass m  located at node i. To calculate partial frequencies 

i , we compose equation (4) in the scalar form: 

0,i i imz D z+ =  

where iD  is the scalar stiffness coefficient (i is the mass number). Load oscillation frequency 

/ .i iD m =  
(18) 

The stiffness coefficient, the reciprocal of the compliance coefficient, is determined by the 
Maxwell-Mohr formula (1): 

( )
2

( )

1

1/ / ( )
sn
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i iD S l EF 

=

 = = . 

From (17) and (18) follows 
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m
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− −

= =

 =  =  . Since compliance is the reciprocal of stiffness 

1/ i iD =  , then: 
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Let us successively calculate the sums ( )
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Let us calculate the common terms of the sequences of coefficients in these expressions. We get 
3

[ , , , ]

,n

a c d h

r
=

 =  where:

 
2

3 2 2

3 2 2

(49 60 18) / (6 ),

( 36 102 72) / (6

(54 228 6 .06) / (3

),

)

c

h

ar n n n

r n n n n

n n n nr

= − +

= + + +

= −+ +

 (20) 

When deriving expressions for the coefficients (20), the rgf_findrecur operator was used to 
compose the recursive equations of the Maple system. The resolve operator was used to solve these 
equations and obtain the common terms of the sequences. The direct application of such an algorithm 
does not give a result in this case, since the members of the sequences have the form of fractions, in 

which not only numerators, but denominators depend on n. The Maple system operators are not 

designed to define the common members of such sequences. Success was achieved only because it 
was possible to guess the type of denominators. An alternative method for finding common members of 
sequences is provided by the FindSequenceFunction operator from the Wolfram Mathematica symbolic 
mathematics package. As a result, the lower estimate for the first frequency according to Dunkerley is: 

3

[ , , , ]

.

a c

D

d h

EF
h

m r
=


 =

  (21) 

Formula (21) almost coincides in form with formula (16) obtained by the Rayleigh method, but 
Dunkerley's estimate (20) is much simpler. In this formula, the desired coefficients are contained only in 
the denominator. 

3.3.3 Numerical example 

To estimate the error of the estimates found, consider a truss with n panels with dimensions 

  1m,    4 m.h a= =  Mass of cargo 400kgm= . We take the rigidity of the steel rods of the truss N. 

Figure (6) plots the dependences on the number of panels of the upper estimate of the lowest 

frequency R  according to formula (17), the Dunkerley estimate  D  (21), and the numerical value of 

the first frequency of the spectrum found by analyzing the solution to the problem of oscillation of a 
system with K degrees of freedom. 

 

Fig. 6 - Dependence on the number of panels of the first oscillation frequency R
 
according to the 

Rayleigh method, the frequency D
 
according to the Dunkerley method, and the first frequency 1  

of the spectrum obtained numerically 
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As the number of panels increases, the frequency decreases. It is also obvious that the error of 
the Dunkerley method is much larger than that of the Rayleigh method. For a more accurate estimate 

of the error, we introduce the relative errors 1 1| | /D D =  −  , 1 1| | /R R =  −  . Graph 7 shows that 

the accuracy of estimates depends not so much on the number of panels as on the height h. For low 
coverage heights, the error of the Rayleigh method does not exceed 5%. For high altitudes, the 
accuracy of the Dunkerley method is unsatisfactory, almost does not depend on the number of panels, 
and the error is more than 60%. 

 

Fig. 7 - Relative error of the upper and lower estimates 

4 Conclusion 

A new scheme of a statically determined truss of spatial coverage is proposed, for which formulas 
for deflections and estimates of the first natural frequency for an arbitrary number of panels are derived 
by induction. The resulting calculation formulas for deflections within the framework of the adopted 
model were obtained without any simplifying assumptions and can be used both to assess the 
accuracy of numerical solutions and to preliminary assess the operational characteristics of the 
structure being designed. These formulas are especially effective as an alternative to numerical 
calculations, especially for structures of a high order of regularity, which are characterized by the 
inevitable accumulation of rounding errors and large expenditures of computer time. 

The found analytical estimates of the lowest oscillation frequency showed that the accuracy of the 
Rayleigh estimate is quite sufficient for using the obtained formula in calculations, and the accuracy of 
the simpler lower estimate of the Dunkerley frequency is unsatisfactory, although, judging by graph 5, 
the nature of the dependence of this value on the number of panels is similar to within factor to the 
numerical solution. 

Analytical solutions make it possible to analyze and select the most optimal parameters of a 
simplified model of a structure being designed without using a numerical solution of a real structure. 
One of the advantages of the analytical solution is the independence of its accuracy from the order of 
regularity of the construction. In three-dimensional problems requiring a large number of calculations, 
this advantage is more pronounced than for planar systems. 
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