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Abstract: 

The object of research. A new scheme of a lattice externally statically indeterminate truss in the 
form of a triangle with a lower chord supported by vertical posts and a fixed hinge is considered. When 
looking for the forces in critical bars and deflection, a vertical load is considered, which is evenly distributed 
over all external and internal nodes of the truss. The dependence of the deflection of the truss top on the 
load, dimensions and number of truss panels is given. A formula is derived for the lower estimate of the 
first frequency of natural oscillations. Method. The calculation of forces is carried out by cutting out all the 
nodes of the structure. The number of unknowns of the system of linear equilibrium equations in the 
projection on the coordinate axes includes both forces and reactions of supports. The deflection is 
calculated in analytical form using the Maxwell-Mohr formula and is generalized by induction from solving a 
number of problems for trusses with a different number of panels to an arbitrary order of a regular truss. To 
find an analytical estimate of the first frequency of natural oscillations of nodes endowed with masses, 
each of which has two degrees of freedom, the Dunkerley lower estimate method is used. Results. The 
formulas obtained for the forces in the rods, deflection and the first frequency have a compact form, which 
can be used to obtain simple evaluation solutions. The lower analytical estimate of the first oscillation 
frequency is in good agreement with the numerical solution for the entire spectrum of structure oscillations. 
All necessary transformations are performed in the Maple symbolic mathematics system. Linear 
asymptotics of solutions for deflection and forces are found. 

1 Introduction 

Truss structures are used both in construction and in mechanical engineering. The advantage of 
trusses is their strength, light weight, ease of installation and comparative ease of calculation. Such 
constructions are usually durable, easy to use. The methodology for calculating the strength, stability and 
oscillations of real trusses is traditionally based on numerical calculations, usually using the finite element 
method with specialized packages [1]–[5]. Analytical solutions are used less often. For the first time, 
Hutchinson R., Fleck N., and Zok F., Latture R, Bergley M. [6]–[8] took up the problem of the existence and 
calculation of statically determinate regular systems (planar and spatial) that allow analytical solutions for 
an arbitrary number of panels. Some analytical solutions are known in the form of finite formulas for 
deformations of regular planar [9]–[12] and three-dimensional trusses [13]. In [14] formulas for the lower 
estimate of the first natural frequency of planar trusses obtained by induction for an arbitrary order of a 
regular structure are given. There are another directions in the analytical study of structures using the 
representation of the solution in the form of trigonometric series [15]–[19] or using the Bubnov - Galerkin 
method [20]. In [21]–[23], regular constructions are studied in connection with optimization problems. 
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Handbook [24] contain diagrams of planar statically determinate regular trusses and formulas for 
calculating their deflection under the action of concentrated and distributed loads of various types. 

Here, too, the method of induction was used, which consists in generalizing a series of separate 
calculations of trusses with a successively increasing number of panels to the case of an arbitrary number 
of panels. The operators of the Maple symbolic mathematics system were used in analytical calculations. 
The method of induction is also applicable for deriving the dependences of deformations of spatial trusses 
[25] on the order of the system (the number of panels). 

In this paper, a new scheme of a regular statically definable planar lattice in the form of a triangular 
truss supported on base nodes is studied. The task was set to derive analytical dependences of the top 
deflection and oscillation frequency on the number of panels. The results of the performed research can be 
used in optimization problems and for evaluating numerical solutions, for which, in the case of a large 
number of rods, numerical calculations may inevitably lead to errors due to the accumulation of rounding 
errors. 

2 Materials and methods 

A truss with a length of 2na and a height of nh contains ( 2)( 3) / 2n n+ +  nodes, including the 

support nodes. Number of internal nodes ( 1)( 2) / 2K n n= + + . The number of bars, including the bars 

modeling supports, is twice as many as ( 1)( 2).N n n= + +  The truss is statically determinate. When 

calculating the oscillation frequencies of the structure, it is assumed that the mass of the truss is 
concentrated in nodes that have two degrees of freedom each. 

 

Fig. 1. Truss structure under uniform load n = 4 

 Forces are calculated in the Maple system using the [26] program. Truss nodes and rods are 
numbered (Fig. 2). The origin of coordinates is in the left support. Coordinates are set in cycles. Here is the 
corresponding fragment of the program in the Maple language: 

 s:=0: n1:=(n+1)*(n+2)/2; 
 for j to n+1 do 
  for i to n+2-j do  

    x[i+s]:=2*a*i+a*j-3*a:  

    y[i+s]:=h*(j-1):  

  end: 

  s:=s+n+2-j; 

 end: 
 for i to n-1 do x[i+n1]:=2*a*i:y[i+n1]:=-h:end: 
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Fig.  2. Numbering of nodes and rods, n=4 

The structure of the lattice is established by the order of connection of the rods at the nodes. To do 

this, special lists are introduced 1 2[ , ]i i =  of numbers 1i , 2i  rod ends 1,.., N = . The bars of the lower 

outer contour, for example, have the following node numbers at the ends: [ , 1], 1,..,i i i i n = + = . In the 

same way, the numbers of the ends of the remaining bars of the lattice are set. The system of equilibrium 

equations of nodes in projections on the coordinate axes is compiled in matrix form =GS B , where G  — 

is the matrix of coefficients of the projection equations, S  — is the vector of all forces and reactions of the 

supports, B  — is the load vector. The projections of the conditional vectors of the rods on the coordinate 

axes have the form 
,1 ,2 ,1 ,2, ,,

i i i ix i y il x x l y y   = − = − . The matrix G  consists of the direction cosines of the 

forces. In this case, the same force is applied to different ends of the rod and directed in different 
directions: 

,2 ,2

,1 ,1

2 1, , 2 , ,

2 1, , 2 , ,

/ , / ,

/ , / .

i i

i i

i x i i i y i i

i x i i i y i i

G l l G l l

G l l G l l

 − 

 − 

= − = −

= =
 

 where 
2 2
, ,ii x i yl l l+=    — rod length.  
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The solution of the system of equations can be obtained in symbolic or numerical form. 

3 Results 

3.1 Forces in rods 

The case of loading a truss with a vertical nodal load, uniform across all nodes, is considered (Fig. 
1). The load vector on the right side of the equilibrium equation system in this case has the form: 

2 , 1,.., .iB P i K= − =
 
Vertical external forces are written in even lines of this vector, horizontal forces are 

written in odd lines. Figure 3 shows a picture of the distribution of forces in the bars of the structure. The 
force values are related to the value P of the load on the node and rounded to two significant figures. The 
most stretched rod was, as expected, in the middle of the lower chord, and the most compressed, in the 
lower rod of the lateral side. 

 

Fig. 3. Distribution of forces in the truss rods, n=5, a=3 m, h= 4 m 

 The reactions of all vertical supports under such a load are the same and equal to ( 2) / 2.R P n= +

The red color marks the tensioned rods with positive forces, the blue color — the compressed rods with 
negative forces. The thicknesses of the segments of the rods are conditionally proportional to the moduli of 
forces in these rods. 

 Analytical dependencies on the number of panels of force nT  of the most compressed rod and nU  

of the most stretched rod can be done by induction. The sequence of efforts nU  for different n has the 

form 2 ,  3 / ,  4 / ,  6 / ,( )h aP h aP h aP h / ,  3 /  15 / 2 ,  10 / ,  12 / ,...( )aP h aP aP h aP h aP h . The recursive 

equation, which is satisfied by the common term of this sequence, gives the operator rgf_findrecur of the 

Maple system: 1 3 42 2 .n n n nU U U U− − −= − +  The solution to this equation has the form: 

2(3( 1) 2 4 3) / (16 ).n
n aP nU n h− + + −=  Similarly, the expression for the most compressed rod is we 
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obtained: / (2 ).nТ cPn h= −  These solutions have asymptotic approximations. Let the height of the truss be 

H and the length of the base L. The following limits are found 

2 2 2lim / / (16 ), lim / 4 / (4 ),n n
n n

U n PL H T n P H L H
→ →

= = − +  

where , 2H bh L na= = . 

3.2 Deflection 

To calculate the deflection of the top of the truss, the Maxwell-Mohr's formula is used, assuming that 
all the bars are elastic and have the same stiffness EF:  

( )( ) (1)

1

/
N

PS S l EF  

=

 = .

 
The sum is compiled for all elastic bars of the structure, including bars that model supports. The 

following designations are used in the formula: 
( )PS — is the force in the rod with number   from the 

action of an external load, 
(1)S  is the force in the same rod from the action of a single vertical force applied 

to the vertex C, the deflection (vertical displacement) of which is measured, l  is the length of the rod. 

To derive the formula for the dependence of the deflection on the number of panels, the induction 

method is used. Calculating the deflection sequentially for trusses of the order n = 1, 2, 3, ... , gives: 
3 3 3 2

1

3 3 3 2

2

3 3 3 2

3

3 3 3 2

4

3 3 3 2

5

( 3 ) / (2 ),

(4 3 4 ) / (2 ),

(10 6 5 ) / (2 ),

(10 5 3 ) / ( ),

(35 15 7 ) / (2 ),...

P a c h h EF

P a c h h EF

P a c h h EF

P a c h h EF

P a c h h EF

 = + +

 = + +

 = + +

 = + +

 = + +

 

where 
2 2c a h= + . Generalizing these formulas using the operators of the Maple system to an arbitrary 

number n gives the following result: 
3 3 3 2

1 2 3( ) / ( ),n P C a C c C h h EF = + +
 

where the coefficients are found from the solution of homogeneous linear recurrent equations and have the 

form 1 2 3( 1)( 2) /12, ( 1) / 4, ( 2) / 2.C n n n C n n C n= + + = + = +  

Similarly, but even simpler, the dependence of the deflection is obtained when a single force applied 

to the vertex acts on the truss:
3 3 3 2( ( ) / (2 ).)n P n a c h h EF = + +  

 This solution is much simpler due to the type of stress state of the truss under the action of a 
concentrated load. Only the lateral rods are compressed, and, moreover, by the same forces, while the 
rods of the lower chord are also stretched by the same forces. The forces in all other rods under such a 
load are equal to zero. 

Let '  the value of the dimensionless deflection, related to the length 2 100mL na= = of the lateral 

side of the truss and the total load 0P K P= : 0' / ( )nEF P L =  . The found dependence (4) has a limiting 

value on the horizontal asymptote lim ' / (2 )
n

h L
→

 =
 
(Fig. 4). 
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Fig.  4. Relative deflection of the top under the action of a distributed load 

3.3 Natural frequency 

The value of the first (lowest) frequency of natural vibrations is included in most solutions to 
problems of structural dynamics. This value is also required to assess the seismic characteristics of the 
structure [27]–[29]. The lower bound of the first frequency for regular constructions can be obtained in 
analytical form depending on the number of panels [9], [30]. 

To calculate the natural vibration frequencies of the considered structure, a simplified but widespread 
model of the inertial properties of the truss was adopted. It is assumed that the truss rods have no mass, 
and the entire mass is evenly distributed over the nodes. Each mass has two degrees of freedom. Thus, 
the total number of degrees of freedom is 2K . The Dunkerley formula [31], [32] for the lower frequency 
limit is: 

2
2 2

1

,
K

D p

p

− −

=

= 

                                                             

(1) 

where p  — are the partial frequencies. Partial frequencies in vertical and horizontal oscillations are 

considered separately 

2 2 2 2 2

, , , ,

1

( ).
K

D D y D x p y p x

p

− − − − −

=

= + = +    

                                                          

(2) 

Partial frequencies of vertical mass oscillations are determined from the equation 

, 1,0 ...,p p p p Kmy D y+ ==
 
 ,                                                 (3) 

Here  pD — stiffness, the reciprocal of compliance 1 /p pD = . Compliance (vertical displacement) 

can be calculated using the Maxwell-Mohr formula 

( )
2

( )

1

1/ / ( ),
N

p

p pD S l EF
=

= =  




                                                     

(4)
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where 
( )pS  is the force in the rod with number  from the action of a vertical unit force applied to the node 

p,  where the mass is located. The stiffness factor and the partial frequency depend on the location where 

the mass is located. For harmonic vibrations sin( )p py U t = + , from (3) follows , / .p y pD m=
 

Substituting this relation in (4) gives the following expression for estimating the first frequency only by 
partial frequencies of vertical oscillations : 

2 2

, , ,

1 1

.
K K

D y p y p y n

p p

m m− −

= =

= = =    

                                                          

(5) 

 Sequential calculation of truss frequencies with a different number of panels shows that the 

coefficient in ,y n  (7) for different n has the form: 

3 3 3 2

,1

3 3 3 2

,2

3 3 3 2

,3

3 3 3 2

,4

3 3 3 2

,5

(5 5 ) / (2 ),

(4 4 9 ) / (2 ),

(5 5 7 ) / ( ),

10( ) / ( ),

(35 35 27 ) / (2 ),...

y

y

y

y

y

a c h EFh

a c h EFh

a c h EFh

a c h EFh

a c h EFh

 = + +

 = + +

 = + +

 = + +

 = + +

 

 In general: 

  
( ) ( )3 3 3 2

, 1 2) .( /y n y yC a c C h EFh = + +
                                                 

(6) 

 The coefficients for  3a , 3c  , and 3h , are obtained from the solution of the corresponding recursive 
equations: 

                             

1 2( 1)( 2) /12, ( 4)( 1) / 4.C n n n C n n= + + = + +                                         (7) 

Similarly, in the case of horizontal oscillations 

( ) ( ),

2 2

, ,

3 3 3 2

1, 2 3,,

1 1

,/
K K

D x p x p x

p

x x

p

xn C a C c C h Em m hm F− −

= =

= = =  = + +   

                            

(8) 

where
 

                       

1,

2,

3,

(5 6)( 2)( 1) /12,

( 1)( 2) /12,

( 1) / 4.

x

x

x

C n n n

C n n n

C n n

= + + +

= + +

= +

                                                                   (9) 

 Thus, from (2), (5-8) follows the expression for the lower estimate of the first frequency 

( ) ( )3 3 3 2 3 3 3 2
1 2 1,

2
2, 3,)( / /y y xD x xCE a c C h h C a C c h aF C− ++ + + +=

                     
(10) 

with coefficients (6) and (9). 
 The errors of the resulting estimate can only be estimated from a comparison with the minimum 

frequency of the entire spectrum of natural frequencies of the structure obtained numerically. This solution 
reduces to an eigenvalue problem. The system of differential equations of motion of the masses of the 

structure with the number of degrees of freedom 2r K=  is written in matrix form: 

0,r rm + =I U D U
                                                                 

(11) 
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where rD  is the truss stiffness matrix, U  is the mass displacement vector (horizontal and vertical), rI  is 

the identity matrix.  Multiplying the vector equation (11) on the left by the matrix rB  inverse to matrix rD
 

gives the equation 

0.r rm + =B U I U
                                                                         

(12) 

For harmonic oscillations with frequency  , a connection 2= −U U  is known . 

 In this case, from (12)  it immediately follows: ,r =B U U  where 
21 / ( )m =  are the eigenvalues 

of the matrix rB , the elements of which are calculated by the Maxwell-Mohr's formula. To find the 

eigenvalues of a matrix in the Maple system, there is the Eigenvalues operator from the LinearAlgebra 
package of linear algebra. The solution here can only be found numerically. 

Example. A steel truss with masses of 800kgm=  in knots has a panel length of 6ma = . The 

stiffness of the rods is 51.8 10 kNEF =  , the height of the support posts is h. Figure 5 shows the 

dependences of the first frequency on the number of panels obtained numerically and analytically. 

 

Fig.  5. Comparison of the first frequency 1  and D  of its lower analytical estimate 

The dependence of the relative error 1 1( ) /D   = −  on the number of panels (Fig. 6) shows that 

with an increase in the number of panels, the error increases monotonically, reaching a horizontal 

asymptote, the value of which depends on the height h. 



Kirsanov, M. 
Deformations and Natural Frequency of a Triangular Truss: Analytical Solutions;  
2022; Construction of Unique Buildings and Structures;  100 Article No 10005. doi: 10.4123/CUBS.100.5 

  

Fig.  6. Error of the analytical solution for natural frequency depending on the number of panels 

4  Discussion 

A simple but unusual scheme of a rod statically determinate planar structure is proposed. If beam, 
arch and frame schemes of trusses are well studied and for many of them analytical solutions of problems 
of both deformations and natural frequencies are found, then for trusses with a triangular outline of the 
upper chord, such solutions are quite rare [33]. Here, a triangular outwardly statically indeterminate truss 
with supports located at its base is chosen for analysis. For the method used, external static indeterminacy 
is not a problem. The system of equilibrium equations for all truss nodes includes not only unknown forces, 
but also the reactions of the supports. Moreover, the amount of calculations allows not only to obtain an 
analytical solution, but also to generalize it to an arbitrary number of panels. Such solutions, designed for a 
wide range of objects under study, are also valuable for solving optimization problems. Separately, it 
should be noted the features of truss modeling when solving the problem of natural frequency. In most 
solutions of such problems [30] it is assumed that nodes have one degree of freedom. Horizontal mass 
movements are usually neglected. This is appropriate for beam schemes of small height, in which, indeed, 
the horizontal rigidity of the structure is much greater than the vertical one. Trial solutions of the triangular 
truss problem in such a simplified formulation showed that the accuracy of the Dunkerley estimate is too 
low. The discrepancy with the numerical solution of the spectrum problem (in the same formulation with 
vertical mass oscillations) exceeds 50%. Accounting for horizontal mass velocities somewhat complicates 
solution (11), but a more accurate (also analytical) solution using the Rayleigh energy method is even 
more complicated and is not presented here. 

5 Conclusion 

The main results of the work: 
1. A new scheme of a symmetric statically determinate triangular truss is proposed. 
2. Calculation formulas are found for the forces in characteristic rods and deflection under the action 

of two types of loads for an arbitrary number of panels. The asymptotics of solutions are revealed. 
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3. An analytical estimate of the first oscillation frequency of the truss has been obtained. Comparison 
with the numerical solution with the lowest frequency of the entire spectrum showed good agreement 
between the solutions. 
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