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Abstract: 

The object of research is the development of a novel approach for the free vibration analysis of 

3D curved cellular bridges using the Panel Element Method (PEM). The free vibration analysis of 3D 
curved cellular bridges was performed by the proposed Panel Element Method (PEM). The objective of 
this research is to examine the relationship between natural frequencies, mode shapes, and 
computational efficiency and the geometric configuration of curved bridge decks. Method. The PEM 

simulates curved cellular decks as assemblies of planar and non-planar panel modules based on a wide 
column analogy where two rigid arms joined by a flexible member mimic coupling between bending and 
torsion. Intrinsic dynamic properties are determined analytically using strain energy minimum principles, 
implemented in MATLAB for parametric analysis. Comparison with the Finite Element Method (FEM) 
assesses mode of vibration discrepancies and computational cost. Validation is done externally by 
solving the equations of equilibrium for bridge geometries with different curvature radius, support types, 
and cell shapes. Results. The PEM is verified against FEM by a variety of case studies for various bridge 

profiles and supports. It is found that the natural frequencies and mode shapes could be predicted 
accurately by the PEM with variation of less than 7% in fundamental modes compared to FEM. A high 
degree of computational efficiency by PEM is proved with over 90% savings in computational efforts 
without any accuracy loss. The paper concludes that the PEM is a good method for free vibration analysis 
that can achieve a compromise between accuracy and computational efficiency and is a possible 
substitute for the analysis of the dynamic behavior of curved bridge decks with various configurations. 

1 Introduction 

The dynamic analysis of three-dimensional curved cellular structures has become one of the 
important and interesting areas of research in modern engineering, which is favored by their gradual 
popularity in urban structures. The mathematical formulation of these more-than-elaborate systems, 
constructed in the original form to cross the vast distances over which traffic flows, was the first step 
whereas today they are systematically used for the analysis of other designs by machines and 
computers. However, aside from the fact that these structures include an intricate network of interacting 
elements, the extreme case of the non-linear inter-relationships of the geometric function of these 
structures, which makes prediction of the behavior of their vibration under dynamic loading very 
complicated, the use of advanced computational methods is necessary. Further, the extreme visibility of 
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the geometric features of such structures in the deck-movement of the tubes spanning the bridge's wings-
such as mechanical types of monoclimb and the interactions of numerous substituted parts, which are 
interrelated among the above bandwidth, made it extraordinarily complex to predict the vibration 
response of the structure during its natural and forced executions [1]. 

Vibration characteristics of structures, including those curved, are one of the widely studied topics. 
Huffington and Hoppmann (2021) used the modal Eigen-functions of orthotropic plates to compute the 
frequencies and eigenfunctions of the structures forming the basis of this work [2]. Cheung et al. (1971) 
applied the Finite Strip Method to the analyses of bridges of any size and thickness [3]. Bickford and 
Strom (1975) used the transfer matrix for the analysis of curved beams [4]. Al-Khazraji, et al. (2010) put 
forward the bilevel calculus to specializing both the straight and curved cellular bridges, in turn, upon 
which this research was to be based [5]. Agarwal P. et al. (2022) employed a finite element method to 
examine free vibration in 420 varied parameters models of the box-girder type bridge [6]. Nidhi Gupta, et 
al. (2019) used the finite element method on the solver SAP2000 to analyze the vibration frequencies of 
the simply supported and RCC box-girder bridge with a varying curvature in the numerical experiment 
[7]. 

Traditional approaches, such as the Finite Element Method (FEM), remain widely employed for 
free vibration analysis. Studies by Verma and Nallasivam (2023) and Xiang et al. (2023) demonstrate 
FEM’s utility in modeling vehicle-bridge interactions and stochastic resonance effects in curved box 
girders [8], [9]. Similarly, Zhu et al. (2023) applied the Extended Finite Element Method (XFEM) to analyze 
crack propagation in bridge decks [10], while Ahmad et al. (2023) explored damage impacts on vibrational 
characteristics via nonlinear FEM [11]. Despite its versatility, FEM faces limitations in computational 
efficiency and accuracy for curved cellular systems, particularly under multi-component loading scenarios 
[12], [13]. 

There have been recent developments in computational techniques that have greatly improved the 
capability to analyze the dynamic response of intricate structures. Traditional methods, such as the Finite 
Element Method (FEM), have been widely employed for free vibration analysis. However, FEM can be 
computationally intensive, especially for intricate geometries like 3D curved cellular bridges, 
necessitating the exploration of alternative approaches that balance accuracy and computational 
efficiency. The Panel Element Method (PEM) has emerged as a promising alternative, simplifying the 
modeling of curved cellular bridge decks by representing them as assemblages of planar and non-planar 
panel units. This approach not only reduces the degrees of freedom but also maintains a high level of 
accuracy in predicting natural frequencies and mode shapes [14] – [16]. 

Novel methods like the Panel Element Method (PEM) offer a promising alternative. By dividing 
curved decks into planar and non-planar panel units, PEM achieves ease of modeling at no cost in 
geometric accuracy [17]. Al_Temimi (2014) further highlight PEM’s potential to enhance computational 
efficiency [17]. Nevertheless, comprehensive validation of PEM against FEM for curved cellular bridges 
remains sparse. For instance, studies by some researchers have identified gaps in PEM’s application to 
dynamic load predictions, particularly for systems involving train-track-bridge interactions [18] or 
pedestrian-induced vibrations [19]. 

Complementary research underscores additional challenges. Verma et al. (2025) developed 
regression models to predict dynamic responses of thin-walled girders [20], while Zhang et al. (2020) 
proposed frequency-domain frameworks to reduce computational costs [21]. Consolazio et al. (2004) 
emphasized the role of dynamic load modeling in pier impacts [22], and Owerko (2018) highlighted 
unresolved methodological limitations in PEM validation [23]. These works collectively reveal a pressing 
need for systematic comparisons between PEM and FEM to establish robust predictive frameworks [24]. 

This study addresses these gaps by evaluating PEM’s efficacy in analyzing free vibrations of three-
dimensional curved cellular bridges. Through parametric comparisons with FEM, the research assesses 
PEM’s computational efficiency, accuracy in modal frequency prediction, and applicability to diverse 
loading scenarios—including stochastic, vehicular, and pedestrian-induced vibrations. By integrating 
insights from structural integrity [10], damage modeling [11], and load detection algorithms [13], the work 
aims to refine PEM’s utility for optimizing the seismic and dynamic design of modern bridges. 

The primary aim of this study was to study the free vibration analysis of three-dimensional curved 
cellular bridges, especially their dynamic behavior and vibrational characteristics. The new computational 
methods, specifically the Panel Element Method (PEM), were used in this research to enhance the 
accuracy and effectiveness of vibration analysis. The objective was to provide a unique understanding 
of the vibrational response of curved cellular bridges to different loads thus contributing to the design and 
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safety of these vital infrastructures. The tasks involved examining how effective PEM is, to compare it 
with the classical methods, and to determine its applicability to different bridge types. 

The methodical nature of this study is intended to bridge the existing gaps in scholarly knowledge 
and to provide a basis for advancing knowledge in the field of seismic and dynamic analysis and design 
of road bridges. 

2 Materials and Methods 

2.1 Description of the panel element method (PEM) 

An idealization procedure for the panel element (PE), termed the Panel Element Method (PEM), is 
presented. This analogous frame approach modifies an existing frame method element. The proposed 
PE and PEM serve as idealization for modeling curved cellular bridge decks. 

2.2 Basis and Assumptions of the Panel Element (PE) 

The proposed panel element, based on the Wide Column Analogy [17] shown in (Fig. 1a), consists 
of two horizontal rigid arms connected by a central flexible beam. Each element has four nodes, with 
three translational and one rotational degree of freedom per node, see (Fig. 1c). The rigid arms constrain 
in-plane translations and out-of-plane rotations to be identical, resulting in twelve degrees of freedom per 
element, as shown in (Fig. 1d). 

 

Fig. 1 - Development of the Panel Element (PE) [17] 

The derivation and modification of the Panel Element Method (PEM) are based on these 
assumptions: 

1. The bridge is modeled as a finite assemblage of flat plates or wall panels. 
2. Each panel is represented by a conventional space frame element. 
3. In-plane flexural and shear deformations of each panel element (PE) are included. 
4. Out-of-plane flexural and shear deformations of each PE are also included. 
5. Diaphragms are infinitely rigid in-planes and flexible out-of-planes. 

2.3 Stiffness Matrix of the Panel Element 

The element stiffness matrix [Ke] for the in-plane and out-of-plane degrees of freedom is derived 
from the standard space frame element stiffness matrix [Kc] (Fig. 1b) [17], as the degrees of freedom are 
kinematically relatable, such that: 

   ec eu uT     (1) 
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Where: [Te] - is the transformation matrix, a kinematic transformation, given by: 

 
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0

0

e

e
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T
T

T

   
    
    

 (2) 

The sub-matrices [Te1] are derived using the master-slave transformation concept, connecting the 

element's degrees of freedom in (Fig. 1d) with the conventional 3-D beam column degrees of freedom in 
(Fig. 1b) for both in-plane and out-of-plane elements [17]. 

The stiffness matrix [Ke] of the panel element is given by Eq. (3), and the stiffness matrix [Kc] of the 

standard space frame element (Fig. 1b) can be expressed as below. The sub-matrices of the stiffness 
matrix [Kii] and [Kjj] are defined, with lower signs of off-diagonal elements for [Kii] and upper signs for [Kjj] 
[17]. 

       
T

e e c eK T K T    (3) 
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 (4) 

2.4 Mass Matrix of the Panel Element 

The mass matrix of the panel element can be expressed in terms of the space frame unit, as follows: 

2.4.1 Consistent mass matrix of the panel element 
The element mass matrix [Me] for the in-plane and out-of-plane degrees of freedom at the panel 

element nodal points are derived from the mass matrix [Mc] of the standard space frame element (Fig. 
1b) [17], corresponding to the kinematically equivalent degrees of freedom. Thus, the mass matrix [Me] 
is given by Eq. (5), and the mass matrix [Mc] of the standard space frame element (Fig. 1b) can be 
expressed as below. The sub-matrices of the mass matrix [Mii] and [Mjj] are defined, with lower signs of 
off-diagonal elements for [Mii] and upper signs for [Mjj] [17]. 

       
T

e e c eM T M T    (5) 

 
 ii ij
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M
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    
 
        

 (6) 

2.4.2 HRZ mass matrix of the panel element 

The "HRZ" name refers to the authors of the procedure below. The HRZ Lumping Scheme [25] 
effectively provides a diagonal mass matrix for arbitrary elements by computing only the diagonal terms 
of the consistent element mass matrix and scaling them to preserve the total element mass. This results 
in a diagonal mass matrix, accommodating both translational and rotational degrees of freedom in 1, 2, 
or 3 directions. The steps are: 

1. Compute the diagonal coefficients (mii) of the consistent element mass matrix, (m11, m22, …., 
mnn) (Fig. 2). 

2. Compute the total mass of the panel element, (mp), equal to: pm A h    

3. Determine (Sc) for each coordinate direction by summing diagonal coefficients (mii) associated 
with translational degrees of freedom, excluding rotational ones, that are parallel and in the 
same direction. 

4. Scale all diagonal coefficients (mii) for this direction by (mp/Sc) to preserve the total mass. 
5. Apply these steps to convert the consistent mass matrix to a lumped mass matrix [Ml]. 
6. The panel element mass matrix [Me] is given by: 

       
T

e e l eM T M T    (7) 
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Fig. 2 - Idealization of the Panel Element (PE) [17] 

The HRZ lumping technique yields a simple diagonal mass matrix, maintaining the total degrees of 
freedom of the global structure, and simplifies numerical solutions by reducing storage needs and 
computation time. 

2.5 Effect of The Rigid Diaphragms 

Rigid diaphragms can be located on the right, left, or either side of panel elements. They are 
assumed to be infinitely rigid in-planes and flexible out-of-planes. In the Panel Element Method (PEM), 
units connect via diaphragms on one or both sides. Thus, panel degrees of freedom in the diaphragm 
plane depend on three in-plane degrees of freedom (two translations, one rotation) of a master node at 
the bridge cross-section's center of mass [17]. 

This assumption reduces the dynamic structure's degrees of freedom, assuming no distortion in 
the cellular curved bridge cross-section, which is reasonable for most such bridges. It implies that with 
intermediate diaphragms, the cross-section remains undistorted, while translational degrees of freedom 
along the deck's longitudinal axis are unconstrained, allowing for longitudinal warping during torsional 
deformation. Consequently, the panel element stiffness [Kme] and mass matrices [Mme] contribute to the 

structure's property matrices concerning the degrees of freedom of a typical cell panel (Fig. 3), taking the 
form: 

   
T

me g e gK T K T          (8) 

   
T

me g e gM T M T          (9) 

Here, [Ke] and [Me] are the panel element stiffness and mass matrices from Eq. (3) and Eq. (5) or 
Eq. (7), respectively. [Tg] is the transformation matrix within diaphragms, relating individual panel element 
degrees of freedom to the global structure's degrees of freedom (Fig. 3). [Tg] is defined for panel elements 

constrained by rigid diaphragms at both ends, at the left end, at the right end, or with no constraints [17]. 

 

Fig. 3 - Idealization of a Single-Cell Bridge Deck with Rigid Diaphragms Using the Component 
Element Method 
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2.6 3D-coordinate rotation matrix 

Rotation matrices convert between reference systems, crucial for computing joint angles. This 
section details transforming 3D-coordinate systems, providing a basis for determining global stiffness 
and mass matrices and developing joint solutions. 

The 3D transformation from local to global coordinates is shown in (Fig. 4), where (x, y, z) is the 

global system and (x2, y2, z2) often denoted by (xyz ), is the local system. 

 

Fig. 4 - Transformation From Local Coordinate System to Global Coordinate System [26] 

2.6.1 Transformations into System Coordinates 
Panel element stiffness and mass matrices refer to local axes (x', y', z'). Each bridge element may 

be oriented arbitrarily, requiring transformation to global degrees of freedom before assembling the 
system matrices. The global axes (X, Y, Z) align with local axes (x', y', z') through rotations about (Y, X, 
Z) axes, (Fig. 5) [27]. 

 

Fig. 5 - Rotation Transformation of Axes for 3-D System [27] 

2.6.2 Local to Global System Conversion 

Element coordinates relate to global coordinates by: [17] 

     l RU T u   (10) 
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Where: {Ul}- is the displacement vector in element coordinates, [TR]- is the 3D transformation matrix, and 
{u}- is the displacement vector in global coordinates. 

The 3D transformation matrix [TR] converts panel element stiffness and mass matrices from local 
to global coordinates (Eq. 11). The 3D rotation matrix [T] is a (3x3) transformation matrix as described in 
(Eq. 12) [17]. 

 

 
 

 
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0 0 0
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 
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 (11) 
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 

     
     

 (12) 

2.6.3 Global Stiffness and Mass Matrices 
The global stiffness [KGe] and mass [MGe] matrices of the panel element, considering the 3D-rotation 

system conversion, are: 

       
T

Ge R me RK T K T    (13) 

       
T

Ge R me RM T M T    (14) 

2.7 Cellular bridge idealization using (cem) 

The global degrees of freedom [U] for a typical cellular bridge deck system (Fig. 2, Fig. 3, and Fig. 

6) using the Component Element Method (CEM) are: 

   z LU u v w    (15) 

Where: u, v, w- are translational displacements in X, Y, Z directions; θz - is rotational displacement 
about the Z axis; θL - is local rotational displacement about each panel element's minor axis. 

Thus, the component element stiffness [KCG] and mass matrices [MCG] are obtained as follows. 

 

Fig. 6 - Idealization of Double Cellular Bridge by Using Component Element Method (CEM) 
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2.7.1 Component Stiffness and Mass Matrices 
The global stiffness [KCG] and mass [MCG] matrices of the component element, after assembling all 

panel element matrices (Fig. 3), are: 

 
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 (17) 

In Eq. (16) and Eq. (17), sub-matrices Kuu, Kvv, Kθzθz, Muu, Mvv and Mθzθz are of order (np), where 
(np) is the number of panels between diaphragms. 

Sub-matrices Kww and Mww are of order (np x mp), with (mp) being the number of longitudinal 
displacements at each diaphragm, equal to the number of nodes there. KθLθL and MθLθL are of order (qp 
x np), where (qp) is the number of panel elements forming the curved cellular-bridge deck system. 

2.8 Finite element idealization method (FEM) 

The finite element idealization validates the proposed Panel Element Method (PEM) and serves 
for comparison. Analyses use ANSYS12 with Beam and Shell 63 (elastic shell) elements. 

A cellular bridge deck, comprising top and bottom slabs, vertical webs, and transverse members 
(rigid diaphragms), is modeled using beam and four-node flat shell elements (Fig. 7, and Fig. 8). For free 
vibration and earthquake response analysis, mesh size is refined until a maximum difference of less than 
2% is achieved in successive solutions. 

 

Fig. 7 - Rectangular Single Cell Simply Supported Curved Box Beam Model 
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Fig. 8 - Rectangular Single Cell Cantilevers Curved Box Shell Model 

2.9 Undamped free vibration analysis 

The governing equation of motion for the damped systems is [28]: 

              M U C U K U F t      , (18) 

Where: {Ü}, {U } and {U}- are the time-dependent acceleration, velocity, and displacement vectors. 

[K], [C] and [M]- are global stiffness, damping, and mass matrices. {F(t)}- is the applied load vector. 

Assuming classical damping, the damping matrix is: 

2 i iC M    . (19) 

The governing equation for an undamped free vibration system is derived by removing the damping 
matrix and load vector from Eq. (18). Assuming the system's free vibration is harmonic, it is expressed 
as Eq. (21): 

         0M U K U    , (20) 

      i
ˆˆU t U sin t     , (21) 

This equation becomes: 

 U sin t    , (22) 

Substituting (U) and (Ü) from Eq. (22) into Eq. (20) gives: 

2K M or K M             , (23) 

Where: ζi - is the damping ratio for mode (i), ωi - is the natural angular velocity for mode (i), Û - is 

the mode shape, ̂ - is the phase angle, {0}- is a zero vector, Φ- is the eigenvector, ω- is the natural 

frequency, and λ- is the vector of Eigen values, equal to the squares of the natural frequencies vector 
(ω). 

Equations (9) and (10) derive the system's frequency equation [17]: 

   2 0iK M   . (24) 
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Expanding this gives an algebraic equation of (nth) degree, the characteristic equation [29]. The (n) 

roots,  2 2 2 2

1 2 3 n, , , ,    , represent the square of the circular frequencies (Eigen values) for (n) vibration 

modes, with corresponding (n) eigenvectors as mode shapes. Eq. (24) is solved using MATLAB. 

2.10 Restriction of support 

For simply supported, single-span bridge decks with partial restraint, the Panel Element Method 
(PEM) is as effective as the Finite Element Method (FEM). 

Bridge deck support conditions are: 
1. Partially restrained: The end diaphragm is partially restrained out-of-plane, restricting only basic 

node degrees of freedom (Fig. 9a). 
2. Fully restrained: The end diaphragm is fully restrained out-of-plane, restricting all longitudinal 

degrees of freedom (Fig. 9b). 

 

Fig. 9 - Types of Supports Restrained Conditions 

2.11 Validation case studies 

This study examines a single cell curved bridge deck. The layout and dimensions are shown in 
(Fig. 10). Free vibration analysis of a single-span bridge deck is conducted. The decks are assumed to 
be reinforced concrete, modeled as linearly elastic and isotropic, with properties listed in (Table 1). 

 

Fig. 10 - Details of Curved Bridge with Single-Cell Cross-Section 
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Table 1. Material Properties of The Study Cases 

No. Material Properties Values 

1 Elastic Modulus (E) 23.5*106 kN/m2 

2 Weight Density (γ) 24.517 kN/m3 

3 Poisson's Ratio (υ) 0.20 

For comparison, all decks were modeled using panel elements with twelve (12) degrees of freedom 
(d.o.f), sufficient to capture the bridge deck's free vibration characteristics. In contrast, the same single-
cell and double-cell decks required more elements and degrees of freedom when modeled using the 
Finite Element Method (FEM) in ANSYS to predict global free vibration characteristics. 

Natural frequencies and corresponding mode shapes, derived from the equation of motion in Eq. 
(20), were evaluated using the inverse iteration scheme. The mass matrix for the first case study was 
based solely on the deck's weight, while the second case study included live load effects by assuming 
equivalent lumped masses at live load positions. 

3 Results and Discussion 

3.1 Study verification 

Four study verifications were performed on various bridge deck configurations to highlight the 
accuracy and reliability of the proposed optimization procedure (Panel Element Method (PEM)) to 
evaluate the behavior of cellular decks in comparison to the Finite Element Method (FEM). The analysis 
focused on four key aspects: the effect of cell number variation, span length variation, web-to-slab 
thickness ratio, and the number of diaphragms relative to span length. 

3.1.1 Effect of Cell Number Variation 

The study demonstrated that the PEM significantly reduces the degree of freedom (d.o.f) required 
for analysis compared to FEM, particularly in fine mesh scenarios as shown in (Table 2). For instance, 
in a single cell configuration with a fine mesh, FEM required 900 elements and 5,520 d.o.f, whereas PEM 
maintained only 16 elements and 55 d.o.f. This highlights PEM's efficiency in handling complex 
geometries with fewer computational resources. 

Table 2. Effect of Cell Number Variation: (NOP: No. of Panels = 4, ts = tw = 0.3 m, L = 20 m) 

No. of Cells Mesh Size 
Finite Element Method (FEM) Panel Element Method (PEM) 

No. of Elements No. of d.o.f No. of Elements No. of d.o.f 

Single Cell 
Coarse 16 120 

16 55 
Fine 900 5520 

Double Cell 
Coarse 28 180 

28 80 
Fine 1728 10290 

3.1.2 Effect of Span Length Variation 

Increasing the span length from 20 m to 30 m showed a substantial increase in the computational 
demand for FEM, while PEM maintained consistent performance with fewer elements and d.o.f. For a 30 
m span with a fine mesh, FEM required 1320 elements and 8040 d.o.f, whereas PEM required only 24 
elements and 77 d.o.f, demonstrating its computational efficiency, as shown in (Table 3). 

Table 3. Effect of Span Length Variation: (NOP = 4; 6, ts = tw = 0.3 m, L = 20; 30 m) 

Span Length (L) Mesh Size 
Finite Element Method (FEM) Panel Element Method (PEM) 

No. of Elements No. of d.o.f No. of Elements No. of d.o.f 

20 m 
Coarse 16 120 

16 55 
Fine 900 5520 

30 m 
Coarse 24 168 

24 77 
Fine 1320 8040 
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3.1.3 Effect of (Web : Slab) Thickness Ratio 

Across various thickness ratios, PEM consistently required fewer elements and d.o.f compared to 
FEM as shown in (Table 4). This indicates that PEM is robust in handling variations in structural design 
without a significant increase in computational complexity, maintaining 16 elements and 55 d.o.f across 
all tested ratios. 

Table 4. Effect of (Web : Slab) Thickness Ratio: (NOP = 4, ts = 0.2 m, tw = 0.1, 0.2, 0.3 and 0.4 m, L = 
20 m) 

tw/ts Ratio No. of Cell 
Finite Element Method (FEM) Panel Element Method (PEM) 

No. of Elements No. of d.o.f No. of Elements No. of d.o.f 

0.5 

Single 
Cellular Deck 

Bridge 

16 120 16 55 

1 16 120 16 55 

1.5 16 120 16 55 

2 16 120 16 55 

 

3.1.4 Effect of (No. of Diaphragms : Span) Ratio 

The analysis of diaphragm configurations showed that PEM could efficiently model complex 
geometries with fewer elements and d.o.f. as shown in (Table 5). For example, with 10 panels, FEM 
required 40 elements and 264 d.o.f, while PEM only required 40 elements and 121 d.o.f, further 
emphasizing its efficiency. 

Table 5. Effect of (No. of Diaphragms : Span) Ratio: (NOP = 2, 4, 6 and 10, ts = tw = 0.3 m, L = 20 m) 

No. of Panels No. of Cell 
Finite Element Method (FEM) Panel Element Method (PEM) 

No. of Elements No. of d.o.f No. of Elements No. of d.o.f 

2 

Single 
Cellular Deck 

Bridge 

8 72 8 33 

4 16 120 16 55 

6 24 168 24 77 

10 40 264 40 121 

 

3.2 Parametric studies 

Four parametric studies were conducted to examine the behavior of curved box-girder bridges, 
focusing on the effect of the number of cells, web-to-flange thickness ratios, number of diaphragms and 
live load magnitudes. 

3.2.1 Effect of Number of Cells (Rectangular) 

The study examines how the number of cells in rectangular cellular bridge decks affects natural 
frequencies, comparing FEM and PEM. Both single and double cellular configurations were analyzed 
across five modes. Results in (Table 6) show FEM and PEM frequencies are closely aligned. PEM is 
slightly higher in the first mode (2.97 Hz vs. 2.915 Hz) and shows a noticeable difference in the third 
mode (15.44 Hz vs. 14.724 Hz). Generally, PEM predicts higher frequencies, except in the fourth mode 
(17.82 Hz vs. 18.718 Hz). 

Table 6. Effect of Number of Cells (Rectangular) 

No. of Cells 
Analysis 
Method 

Natural Frequency (ω) in ( Hz ) according to Mode Number 

1 2 3 4 5 

Single 
Cellular 

FEM 2.915 3.671 14.724 18.718 21.250 

PEM 2.97 3.71 15.44 17.82 22.32 

Double 
Cellular 

FEM 2.987 6.211 14.218 16.826 26.713 

PEM 3.02 6.23 14.56 16.90 27.76 
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Figures (11 and 12) show the mode shapes of the first five modes of two types of bridge supports 
(cantilever, simply supported) for the single cell curved bridge deck. The figures show the extent to which 
the type of support at the two ends of the bridge affects its mode shape. 

 

Fig. 11 - Mode Shapes of a Single Cell Cantilever Curved Bridge Deck 

 

Fig. 12 - Mode Shapes of a Single Cell Simply Supported Curved Bridge Deck (Fully Restrained) 

3.2.2 Effect Of Web-to-Flange Thicknesses Ratio 

A single-cell deck with a depth of 2.3 m and width of 3.0 m was analyzed for a 20 m single span 
with partially and fully restrained support, and a radius of curvature of 57.3 m. Thickness ratios varied 
from 0.5 to 2.0. The first five natural frequencies are listed in (Table 7) and (Table 8), with plots in (Fig. 
13) and (Fig. 14) for single-cell decks with partially and fully restrained support, respectively. 

The study found that increasing the web-to-slab thickness ratio raises the natural frequencies, 
attributed to enhanced bridge stiffness, particularly in lateral-torsional modes. 

Table 7. Natural Frequencies vs. (Web:Slab) Thickness Ratio for a Partially Restrained at Supports 

tw/ts ratio 
Analysis 
Method 

Natural Frequency (ω) in ( Hz ) 

Mode No. (Single-Cell, Partially Restrained at Supports) 
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Type 1 2 3 4 5 

0.5 
FEM 7.703 9.045 9.800 10.031 11.662 

PEM 7.78 9.12 10.36 10.43 12.00 

1 
FEM 10.879 12.785 13.816 13.959 15.245 

PEM 10.93 12.84 14.89 15.05 17.04 

1.5 
FEM 10.967 14.791 15.292 18.260 19.270 

PEM 11.02 14.86 15.72 19.32 20.48 

2 
FEM 10.831 16.120 17.209 20.051 21.146 

PEM 10.88 16.19 17.99 20.93 21.91 

Table 8. Natural Frequencies vs. (Web:Slab) Thickness Ratio for a Fully Restrained at Supports 

tw/ts ratio 
Analysis 
Method 
Type 

Natural Frequency (ω) in ( Hz ) 

Mode No. (Single-Cell, Fully Restrained at Supports) 

1 2 3 4 5 

0.5 
FEM 7.709 9.051 10.013 11.630 13.026 

PEM 7.78 9.13 10.53 13.53 14.50 

1 
FEM 12.738 13.818 13.970 15.272 15.856 

PEM 12.83 13.85 14.93 16.33 17.99 

1.5 
FEM 14.790 15.326 17.989 18.988 19.277 

PEM 14.87 15.50 18.24 20.30 21.62 

2 
FEM 16.119 17.231 18.820 21.124 22.677 

PEM 16.16 17.30 18.87 22.29 24.04 

 

 

Fig. 13 - Natural Frequencies vs. (tw/ts) Ratio for a Single Cell Curved Bridge Deck (Partially 
Restrained) 
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Fig. 14 - Natural Frequencies vs. (tw/ts) Ratio for a Single Cell Curved Bridge Deck (Fully 
Restrained) 

3.2.3 Effect of Number of Diaphragms 

The number of diaphragms corresponds to the number of panels, each being a segment between 
two diaphragms. Panels range from 2 to 10 to show how diaphragm variation affects free vibration for a 
constant span. Natural frequencies from the panel element (PE) method are in (Table 9) and (Table 10), 
with plots in (Fig. 15) and (Fig. 16) for partially and fully restrained supports. The study shows the PE 
method accurately predicts vibration characteristics as the number of diaphragms increases. 

Table 9. Natural Frequencies vs No. of Diaphragms of a Single-Cell Deck Bridge (Partially 
Restrained) 

No. of 
Panels 

Analysis 
Method 
Type 

Natural Frequency (ω) in ( Hz ) 

Mode No. (Single-Cell, Partially Restrained at Supports) 

1 2 3 4 5 

2 
FEM 5.467 6.598 6.686 7.025 10.394 

PEM 5.51 6.62 7.36 8.58 12.16 

4 
FEM 10.957 19.185 20.635 20.917 21.540 

PEM 11.03 19.24 21.13 22.43 23.68 

6 
FEM 10.455 20.428 29.067 36.361 40.782 

PEM 10.49 20.57 30.01 37.21 42.01 

10 
FEM 10.256 19.872 28.580 37.965 42.269 

PEM 10.27 20.00 30.60 39.83 45.41 

Table 10. Natural Frequencies vs No. of Diaphragms of a Single-Cell Deck Bridge (Fully Restrained) 

No. of 
Panels 

Analysis 
Method 
Type 

Natural Frequency (ω) in ( Hz ) 

Mode No. (Single-Cell, Fully Restrained at Supports) 

1 2 3 4 5 

2 
FEM 5.485 6.604 6.734 7.688 10.715 

PEM 5.55 6.64 7.02 8.97 11.76 

4 
FEM 18.239 19.417 20.831 21.025 23.075 

PEM 18.31 19.46 21.87 23.02 25.64 
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6 
FEM 17.160 24.600 36.756 40.641 40.857 

PEM 17.20 24.63 38.08 42.50 41.22 

10 
FEM 16.674 24.003 38.288 39.851 47.419 

PEM 16.62 24.05 39.19 41.95 49.68 

 

 

Fig. 15 - Natural Frequencies vs No. of Diaphragms of a Single-Cell Deck Bridge (Partially 
Restrained). 

 

Fig. 16 - Natural Frequencies vs No. of Diaphragms of a Single-Cell Deck Bridge (Fully Restrained) 
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3.2.4 Effect of Live Load 

To assess the effect of live load, simple load cases were considered per Iraq's Specifications for 
Bridge Loading [30]: 

1. Lane Loading: Uniformly distributed loads over the deck with a knife-edge load at mid-span for 
maximum response, designated as load case I. 

2. Military Loading: Two classes studied: 
a) Class 100 (Tracked): One tracked load at mid-span, designated as load case II. 
b) Class 100 (Wheeled), One wheeled load at mid-span, designated as load case III. 

The resulting natural frequencies are listed in (Table 11) and (Table 12) respectively. The proposed 
Panel Element Method (PEM) showed good agreement with results from the finite element (FE) 
approach. 

Table 11. Natural Frequencies of Single-Cell Deck Bridge Under Various Live Loads (Partially 
Restrained) 

Load Case 
No. 

Analysis 
Method 
Type 

Natural Frequency (ω) in ( Hz ) 

Mode No. (Single-Cell, Partially Restrained at Supports) 

1 2 3 4 5 

I 
FEM 10.800 18.910 20.339 20.616 21.231 

PEM 10.85 18.96 20.87 22.91 26.04 

II 
FEM 10.609 18.576 19.980 20.252 20.856 

PEM 10.58 18.62 21.21 22.12 22.99 

III 
FEM 10.543 18.461 19.856 20.127 20.727 

PEM 10.60 18.50 25.92 22.02 23.71 

Table 12. Natural Frequencies of Single-Cell Deck Bridge Under Various Live Loads (Fully 
Restrained) 

Load Case 
No. 

Analysis 
Method 
Type 

Natural Frequency (ω) in ( Hz ) 

Mode No. (Single-Cell, Fully Restrained at Supports) 

1 2 3 4 5 

I 
FEM 17.977 19.138 20.532 20.723 22.744 

PEM 18.04 19.19 21.74 21.97 25.17 

II 
FEM 17.660 18.800 20.169 20.357 22.342 

PEM 17.68 18.73 22.02 23.29 24.40 

III 
FEM 17.551 18.684 20.044 20.231 22.204 

PEM 17.59 18.73 23.15 22.20 25.61 

The numerical case studies concluded that the developed panel element (PE) approach is a 
versatile method for evaluating the free vibration characteristics of curved bridge decks with single and 
double cells across various span lengths and support conditions. While the finite element (FE) approach 
is reliable, the panel element (PE) method offers significant economic advantages, achieving over 90% 
reduction in degrees of freedom. This substantial decrease in equations, with only a minor sacrifice in 
accuracy for the first few vibration modes, is a key outcome of the developed technique. 

4 Conclusions 

Different configurations of curved cellular bridge decks were analyzed to validate the proposed 
Panel Element Method (PEM) against the Finite Element Method (FEM) for free and forced vibration 
analysis. Key conclusions from the case studies include: 

1. The Panel Element Method (PEM) is a valid and effective approach for the free vibration 
analysis of curved cellular bridges. 

2. Panel Element Method (PEM) accurately predicts the free vibration characteristics (natural 
frequencies and mode shapes) of single-cell curved box-girder bridge decks, with a difference 
of less than 7% compared to the Finite Element Method (FEM). 

3. The PEM significantly reduces computational effort, achieving over 90% reduction in degrees of 
freedom compared to traditional FEM. 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


This publication is licensed under a CC BY-NC 4.0 
 

 

Temimi, F.A.A.; Ahmed, A.R.; Obaidi, A.H.F.; Yermoshin, N.A. 
Vibration Characteristics of 3D Curved Cellular Bridges via Panel Element Method 
2025; Construction of Unique Buildings and Structures; 116 Article No 11601. doi: 10.4123/CUBS.116.1 

4. The analysis reveals that partially restrained supports yield lower natural frequencies than fully 
restrained supports. 

5. Increasing the web-to-flange thickness ratio enhances natural frequencies due to improved 
stiffness. 

6. The effect of live loads on natural frequencies was also significant, with variations observed 
depending on the type of loading applied (lane loading vs. military loading). 

7. The limited degrees of freedom required by the PEM significantly reduce the number of 
equations and iterations, resulting in less error. 
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