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Abstract: 
The object of research is the composite reinforcement at high temperatures. Method. During the 

study, 16 specimens with composite rods bonded with epoxy resin on metal tubes were prepared. The 
specimens were tested using a universal hydraulic machine and pre-heated using a heat gun to heat the 
reinforcement to various temperatures (20°C, 100°C, 150°C, 250°C, and 300°C). The maximum breaking 
load was determined for specimens with and without preheating. Results. Test results show that 
preheating the rods increases the strength of composite rods at elevated temperatures. As the reheating 
temperature increases, the effect of preheating on the strength of the composite rebar increases. The 
difference in maximum tensile strength between preheated and unheated rods, tested at 300°C, reaches 
50%. 

1 Introduction / Введение 

Строительные материалы и технологии требуют постоянного совершенствования для 
повышения надежности и долговечности конструкций под воздействием эксплуатационных 
нагрузок и внешних факторов. В 2020-е годы, благодаря своей высокой прочности, легкости и 
устойчивости к коррозии, все более широкое применение в строительных конструкциях находит 
композитная арматура. Но известно, что прочность композитной арматуры резко снижается при 
нагревании до высоких температур. Это стимулирует поиск способов снижения влияния высоких 
температур на прочность композитной арматуры, что является важным для расширения области 
ее применения. 

Износостойкость полимерных композитов также зависит от содержания волокон и условий 
эксплуатации, таких как температура и влажность [1]-[2]. Внедрение цифровых методов и новых 
технологий армирования — например, интеграция армирующих элементов непосредственно в 
процесс заливки — позволяет переосмыслить роль армирования и повысить его эффективность 
в условиях температурных воздействий [3], [4]. Исследования показывают, что использование 
морской воды и сульфатостойкого цемента способствует повышению механических свойств 
бетона и его устойчивости в агрессивных средах [5]. Преимущества неметаллических 
армирующих веществ при температурных колебаниях и в агрессивных средах обусловлены их 
долговечностью и экологическими характеристиками [6], [7], а использование натуральных и 
минерализованных волокон с улучшенной температурной стойкостью способствует созданию 
более устойчивых конструкций [8], [9]. Дополнительные исследования сосредоточены на 
механических свойствах композитных материалов, полученных методом ручной укладки, где 
различие в типах армирующих волокон влияет на показатели прочности и реакцию материала на 
температуру [10]. Использование армированных волокнами бетонов увеличивает их стойкость к 
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усталости и микротрещинам, что особенно актуально для эксплуатации в экстремальных 
условиях [11]. 

Важной областью исследований является мониторинг коррозии армирующих элементов и 
оценка их поведения при повышенных температурах [12]. В рамках исследований по 
экологической устойчивости и нанотехнологиям изучаются новые материалы с повышенной 
температурной стойкостью, такие как бетоны с углеродными нанотрубками, обладающие 
улучшенными эксплуатационными характеристиками [13]-[15]. Особое значение имеет изучение 
поведения композитных структур при экстремальных температурах. В работах [16] 
продемонстрировано, что увеличение доли армирующих волокон повышает сдвижную прочность 
и жесткость ультра-высокопрочного бетона, а графики эффективности показывают зависимость 
свойств от температуры и состава армирования. 

Композитная армирующая арматура используется в строительстве благодаря своим 
свойствам и удобству эксплуатации [17], [18]. Особое внимание уделяется соединениям 
предварительно напряженного железобетона с использованием композитных стержней, а также 
их поведению при различных температурных воздействиях, что позволяет точно моделировать их 
эксплуатационные характеристики [17], [18]. Рынок показывает, что наиболее распространенной 
является стеклопластиковая арматура благодаря низкой стоимости, в то время как базальтовая, 
углеродная и арамидная армировка отличаются высокой прочностью и применимы в 
сейсмоопасных регионах [19]. Технологические особенности работы с полимерными 
композитами, такие как транспортировка, укладка и контроль качества, требуют понимания их 
специфики при нагревании. 

Представленные в статьях разработки включают использование волоконных материалов, 
таких как стеклопластик, кевлар и высокопрочные волокна, обеспечивающих высокие 
механические показатели при экстремальных температурах [20]. Эксперименты с бетонами, 
усиленными GFRP, показывают снижение их механических свойств при повышении температуры, 
особенно по прочности и микроструктуре, что важно учитывать при проектировании долговечных 
конструкций [21], [22]. 

 Выявлена важность обработки поверхности GFRP для улучшения адгезии с бетоном и 
повышения устойчивости к высокотемпературным воздействиям [23]. Исследование композитных 
материалов в условиях высоких температур является важной областью научных исследований, 
обусловленной необходимостью повышения долговечности и огнестойкости конструкций [24], [25], 
[26]. Кроме того, влияние высоких температур на сцепление компонентов в композитных системах 
и последствия пожаров — например, потерю адгезии выше 400°C — снижают несущую 
способность конструкций [25], [26]. Внедрение нанотехнологий, таких как углеродные нанотрубки, 
способствует повышению термической устойчивости бетонов и их долговечности [27]. 

Исследования показывают, что пожар сильно влияет на арматурные связи и 
конструкционные параметры железобетонных и композитных элементов [28], [29], [30]. В работе 
[28] установлено, что нагревание до условия пожара снижает прочность бетона, что влияет на 
восприимчивость к разрушению. В [30] изучено поведение сцепления арматуры и бетона после 
пожара, выявлено, что уровень деградации соединений зависит от условий нагрева, но изменение 
параметров оказывает незначительное влияние на остаточную прочность. 

Таким образом, можно заключить, что дальнейшие исследования в области композитной 
арматуры, особенно в условиях нагрева, имеют большое значение для разработки более 
безопасных и эффективных строительных решений.  

В данной работе будут представлены экспериментальные исследования, направленные на 
расширение знаний о механических свойствах композитной арматуры при различных 
температурах и условиях эксплуатации. Цель данной работы заключается в исследовании 
влияния предварительного нагрева композитной арматуры на её прочность на растяжение при 
повторном нагреве до высоких температур. Проведено экспериментальное определение 
максимальной прочности композитных стержней при различных температурах, как с 
предварительным прогревом, так и без него. 

2 Materials and Methods / Материалы и методы 

Для проведения испытаний было подготовлено 16 образцов. Каждый образец состоит из 
двух профильных металлических труб с сечением 30×30 мм и длиной 400 мм, в которые 
вклеивались композитные стержни длиной 700 мм (Рис.1). Торцы труб, расположенные на 
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расстоянии 60 мм от края, были сплющены для закрепления в гидравлической испытательной 
машине Р-10 (Техмаш, Россия, Киров). В качестве клеящего состава использовалась эпоксидная 
смола ЭД-20 с отвердителем. После вклеивания стержней, до испытаний образцы 
выдерживались в течение 2-3 суток. Для образцов, предназначенных для последующего нагрева, 
дополнительно, с одной стороны, приклеивалась теплоизоляционная фольга, которая 
препятствовала рассеянию тепловой энергии в окружающую среду. 

 
Рис.1 – Общий вид испытуемых основных образцов 
Fig.1 – General view of the main samples being tested 
Image by the author of the article 

Для испытаний использовалась универсальная гидравлическая машина Р-10 (Техмаш, 
Россия, Киров) с максимальной выдергивающей нагрузкой 50 кН и диапазоном нагружения 10–50 
кН. Погрешность измерений нагружения составляла ±1%. Перемещения фиксировались с 
помощью манометра, закреплённого на установке, со шкалой деления 0.01 мм. 

 
Рис.2 – Общий вид оборудования 
Fig.2 – General view of the equipment 
Image by the author of the article 

Для нагрева композитных стержней использовался строительный фен DEKO HG2200W 063-
4200 (Китай, провинция Цзянсу) (максимальная температура до 600 °С, воздушный расход — 500 
л/мин). Для испытаний образцы закреплялись в испытательной машине (Рис. 2). Для 
предварительного прогрева, композитный стержень нагревался в середине образца, на 
небольшом участке, до температуры 280–300 °С (до почернения арматуры). Контроль 
температуры осуществлялся с помощью лазерного пирометра Aceline (DIN36, Китай, провинция 
Цзянсу) с диапазоном измерения от -50 °С до 550 °С и погрешностью ±2%. Затем, стержень 
остывал, примерно до температуры 20-22 °С. Далее, стержень снова нагревался строительным 
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феном до необходимой для испытания температуры. Таким образом проводились испытания 
прочности композитных стержней на растяжение при различных температурах, как с 
предварительным прогревом до температуры 300 °С, так и без него. 

3 Results and Discussion / Результаты и обсуждение 

Для проверки прочности анкеровки арматуры в профильных трубах были испытаны 6 
образцов, по два для диаметров композитных стержней 6, 8 и 10 мм (Рис. 3). Испытания 
проводились при комнатной температуре, без нагрева. Три образца содержали анкеровку 
арматуры за счёт загибания 10 см арматурного стержня в обратную сторону (общая длина 
арматуры — 900 мм). Результаты испытаний на растяжение приведены в таблице 1. 

 
Рис.3 – Общий вид испытуемых тестовых образцов 
Fig.3 – General appearance of the test samples 
Image by the author of the article 

Таблица 1 – Зависимость максимальной разрывающей силы в зависимости от диаметра 
композитного стержня с анкеровкой и без 

Table 1 – Dependence of the maximum tensile force on the diameter of the composite rod with and 
without anchorage 

Арматура 6мм Арматура 8мм Арматура 10мм 
Без 

анкеровки 
С  

анкеровкой 
Без 

анкеровки 
С  

анкеровкой 
Без 

анкеровки 
С  

анкеровкой 
18.5 kN 21 kN 18 kN 14 kN 15 kN 9 kN 
Анализ результатов испытаний показывает, что максимальная выдергивающая нагрузка при 

использовании арматуры диаметром 8 и 10 мм оказывается ниже, чем для арматуры 6 мм. Это 
связано с тем, что у образцов с более крупным диаметром слой эпоксидной смолы был тонким, и 
при выдергивании происходила потеря связи внутри слоя, а не разрушение самого композитного 
стержня. В связи с этим для дальнейших испытаний использовались стержни диаметром 6 мм. 

Испытывалось 10 образцов: 5 — с предварительным нагревом арматуры, и 5 — без 
предварительного нагрева. Испытания на растяжение проводились при следующих температурах 
стержней: 20 °С, 100 °С, 150 °С, 250 °С и 300 °С. Результаты испытаний представлены на рисунке 
4 и в таблице 2.  

Таблица 2 – Зависимость прочности композитной арматуры от температуры 
Table 2 – Dependence of composite reinforcement strength on temperature 

t, °C Максимальная сила разрыва стержня, кН 
Без предварительного 

нагрева 
С предварительным 

нагревом 
20 19.75 19 

100 15 16.5 
150 13 14.5 
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250 10 13.5 
300 8 12 

 
Рис.4 – График зависимости прочности композитной арматуры от температуры. Синяя линия 
показывает прочность без нагрева, красная — прочность после предварительного нагрева до 
300 градусов Цельсия 
Fig.4 – Graph of composite rebar strength versus temperature. The blue line shows the strength 
without heating, and the red line shows the strength after preheating to 300 degrees Celsius 
Image by the author of the article 

 
Рис.5 – Образцы после испытания, сверху вниз 100°С, 150°С, 250°С, 300°С 
Fig.5 – Samples after testing, from top to bottom 100°C, 150°C, 250°C, 300°C 
Image by the author of the article 

Результаты испытаний показывают, что предварительный нагрев арматуры увеличивает 
прочность композитной арматуры при повышенных температурах. При увеличении температуры 
повторного нагрева, влияние предварительного прогрева на прочность композитного стержня 
увеличивается. Разница в максимальной разрывающей силе, между предварительно прогретым 
стержнем и стержнем без прогрева, для испытаний при температуре 300 °С достигает 50%. 

4 Conclusions / Заключение 

1. Проведены испытания композитных стержней на растяжение при повышенных 
температурах с предварительным нагревом до 300 °С и без него. 

2. Результаты испытаний показывают, что предварительный нагрев арматуры увеличивает 
прочность композитной арматуры при повышенных температурах. При увеличении 
температуры повторного нагрева, влияние предварительного прогрева на прочность 
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композитного стержня увеличивается. Разница в максимальной разрывающей силе, 
между предварительно прогретым стержнем и стержнем без прогрева, для испытаний 
при температуре 300 °С достигает 50%. 
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